Previous |  Up |  Next

Article

Title: Long memory time series models (English)
Author: Anděl, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 22
Issue: 2
Year: 1986
Pages: 105-123
.
Category: math
.
MSC: 60G10
MSC: 62M09
MSC: 62M10
MSC: 62M15
idZBL: Zbl 0607.62111
idMR: MR849684
.
Date available: 2009-09-24T17:52:02Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125019
.
Reference: [1] J. Anděl: Statistische Analyse von Zeitreihen.Akademie-Verlag, Berlin 1984. MR 0762087
Reference: [2] J. Geweke, S. Porter-Hudak: The estimation and application of long memory time series models.J. Time Series Anal. 4 (1983), 221-238. Zbl 0534.62062, MR 0738585
Reference: [3] I. C. Gradštejn, I. M. Ryžik: Tablicy integralov, summ, rjadov i proizvedenij.Izd. 4-oje, Gos. izd. fiz.-mat. literatury, Moskva 1962.
Reference: [4] C. W. J. Granger: Long memory relationships and the aggregation of dynamic models.J. Econometrics 14 (1980), 227-238. Zbl 0466.62108, MR 0597259
Reference: [5] C. W. Granger, R. Joyeux: An introduction to long memory time series models and fractional differencing.J. Time Series Anal. 1 (1980), 15 - 29. Zbl 0503.62079, MR 0605572
Reference: [6] M. K. Grebenča, S. I. Novoselov: Učebnice matematické analysy II.Translated from Russian. NČSAV, Praha 1955.
Reference: [7] E. J. Hannan: The estimation of spectral density after trend removal.J. Roy. Statist. Soc. Ser. B 20 (1958), 323-333. MR 0101605
Reference: [8] J. R. M. Hosking: Fractional differencing.Biometrika 68 (1981), 165-176. Zbl 0464.62088, MR 0614953
Reference: [9] J. R. M. Hosking: Some models of persistence in time series.In: Time Series Analysis, Theory and Practice 1, ed. O. D. Anderson (Proc. Int. Conf. Valencia, 1981), 642-653. North Holland, Amsterdam 1982.
Reference: [10] V. Jarník: Integrální počet II.(Integral Calculus II.) NČSAV, Praha 1956.
Reference: [11] A. Jonas: Long Memory Self Similar Series Models.(unpublished manuscript). Harvard University 1981.
Reference: [12] B. B. Mandelbrot: A fast fractional Gaussian noise generator.Water Resour. Res. 7 (1971), 543-553.
Reference: [13] B. B. Mandelbrot, J. W. van Ness: Fractional Brownian motion, fractional noises and applications.SIAM Rev. 10 (1968), 422-437. MR 0242239
Reference: [14] B. B. Mandelbrot, J. R. Wallis: Computer experiments with fractional Gaussian noises.Water Resour. Res. 5 (1969), 228-267.
Reference: [15] A. I. McLeod, K. W. Hipel: Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon.Water Resour. Res. 14 (1978), 491 - 508.
Reference: [16] P. E. O'Connell: A simple stochastic modelling of Hurst's law.In: Mathematical Models of Hydrology. Symposium, Warsaw, Vol. 1 (1971), 169-187 (IAHS Publ. No. 100, 1974).
Reference: [17] P. E. O'Connell: Stochastic Modelling of Long-Term Persistence in Streamflow Sequences.Ph. D. Thesis, Civil Engineering Dept., Imperial College, London 1974.
Reference: [18] W. Rudin: Analýza v reálném a komplexním oboru.(Translated from English original Real and Complex Analysis.) Academia, Praha 1977. Zbl 0925.00003, MR 0497401
Reference: [19] Z. Vízková: Spektrální analýza časových řad.(Spectral analysis of time series.) Ekonomicko-matematický obzor 6 (1970), 285-309.
.

Files

Files Size Format View
Kybernetika_22-1986-2_1.pdf 1.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo