Previous |  Up |  Next


[1] A. Perez: Sur la theorie de l'information dans le cas d'un alphabet abstrait. Trans. 1st Prague Conf. on Inf. Theory... . Publishing House of the Czechoslovak Acad. Sci., Prague 1957, 209-243. MR 0099890 | Zbl 0106.33102
[2] I. Vajda: Limit theorems for total variation of Cartesian product measures. Studia Sci. Math. Hungarica 6 (1971), 317-333. MR 0310950
[3] T. Marill D. M. Green: On the effectiveness of receptors in recognition systems. IEEE Transaction on Information Theory IT-9 (1962), 11-17.
[4] T. L. Grettenberg: Signal selection in communication and radar systems. IEEE Transactions on Information Theory, IT-9 (1962), 265-275.
[5] T. Kailath: Comparison of the divergence and the Bhattacharya distance measure. Presented at the 4th Prague Conf. on Inf. Theory, Prague 1965.
[6] T. Nemetz: Information theory and the testing of a hypothesis. Proc. Coll. on Inf. Theory, Debrecen, Vol. II, Budapest 1969. MR 0247713
[7] A. Perez: Some estimates of the probability of error in discriminating two stationary random processes. Presented at Conference on Inf. Theory in Dubna, USSR, 1969.
[8] M. E. Hellman J. Raviv: Probability of error, equivocation, and the Chernoff bound. IEEE Transactions on Information Theory IT-16 (1970), 368-372. MR 0272105
[9] V. A. Volkonskij J. A. Rozanov: Some limit theorems for random functions I. Theory of Probability and Appl. (USSR, English transl.) 4 (1959), 178-197. MR 0121856
[10] M. S. Pinsker: Информация и информационная устойчивость случайных величин и процессов. Москва 1960. Zbl 0233.94010
[11] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungarica 2 (1967), 299-318. MR 0219345
[12] J. H. B. Kemperman: On the optimum rate of transmitting information. Ann. Math. Stat. 40 (1969), 2156-2177. MR 0252112 | Zbl 0287.94021
[13] I. Vajda: Note on discrimination information and variation. IEEE Transactions on Information theory IT-16 (1970), 771-773. MR 0275575 | Zbl 0206.21001
[14] S. Kullback: A lower bound for discrimination information in terms of variation. IEEE Transactions on Information theory IT-13 (1967), 126-127.
Partner of
EuDML logo