Previous |  Up |  Next

Article

Title: Bounds on discrete dynamic programming recursions. I. Models with non-negative matrices (English)
Author: Sladký, Karel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 16
Issue: 6
Year: 1980
Pages: (526)-547
.
Category: math
.
MSC: 90C39
idZBL: Zbl 0454.90085
idMR: MR607292
.
Date available: 2009-09-24T17:17:36Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125305
.
Related article: http://dml.cz/handle/10338.dmlcz/124353
.
Reference: [1] R. Bellman: On a Quasi-Linear Equation.Canad. J. Math. 8 (1956), 198-202. Zbl 0071.34902, MR 0077782
Reference: [2] R. Bellman: A Markovian Decision Process.J. Math. Mecb. 6 (1957), 670-684. Zbl 0078.34101, MR 0091859
Reference: [3] R. Bellman: Introduction to Matrix Analysis.McGraw Hill, New York 1960. Second edition 1970. Zbl 0124.01001, MR 0258847
Reference: [4] B. W. Brown: On the Iterative Method of Dynamic Programming in a Finite Space Discrete Time Markov Processes.Ann. Math. Stat. 36 (1965), 4, 1279-1285. MR 0176871
Reference: [5] F. R. Gantmakher: Teoriya matric.Second edition. Nauka, Moscow 1966.
Reference: [6] R. A. Howard: Dynamic Programming and Markov Processes.Technology Press and Wiley Press, New York 1960. Zbl 0091.16001, MR 0118514
Reference: [7] R. A. Howard J. E. Matheson: Risk-sensitive Markov Decision Prccesses.Manag. Sci. 18 (1972), 7, 357-369. MR 0292497
Reference: [8] E. Lanery: Étude asymptotique des systèmes Markoviens à commande.Rev. Franc. Inf. Rech. Oper. 3 (1967), 1, 3-56. Zbl 0159.48804, MR 0226950
Reference: [9] P. Mandl E. Seneta: The Theory of Non-Negative Matrices in a Dynamic Programming Problem.Austral. J. Stat. 11 (1969), 2, 85-96. MR 0411642
Reference: [10] P. Mandl: Decomposable Non-Negative Matrices in a Dynamic Programming Problem.Czech. Math. J. 20 (1970), 3, 504-510. Zbl 0209.22902, MR 0264978
Reference: [11] A. M. Ostrowski: Solution of Equations and System of Equations.Academic Press, New York 1960.
Reference: [12] U. G. Rothblum: Algebraic Eigenspaces of Nonnegative Matrices.Linear Algebra Applic. 72 (1975), 281-292. Zbl 0321.15010, MR 0404298
Reference: [13] U. G. Rothblum: Multiplicative Markov Decision Chains.PhD Dissertation, Dept. Oper. Res., Stanford Calif. 1974.
Reference: [14] U. G. Rothblum: Normalized Markov Decision Chains II - Optimality of Nonstationary Policies.SIAM J. Control. Optim. 15 (1977), 2, 221-232. Zbl 0367.90118, MR 0437085
Reference: [15] P. J. Schweitzer A. Federgruen: The Asymptotic Behavior of Undiscounted Value Iteration in Markov Decision Problems.Mathem. Oper. Res. 2 (1977), 4, 360-381. MR 0465243
Reference: [16] K. Sladký: On Dynamic Programming Recursion for Multiplicative Markov Decision Chains.Math. Progr. Study 6 (1976), 216-226. MR 0452725
Reference: [17] K. Sladký: Successive Approximation Methods for Dynamic Programming Models.In: Proceedings of the Third Formator Symposium on the Analysis of Largs-Scale Systems. (L. Bakule, J. Beneš, eds.) Academia, Prague 1979.
Reference: [18] K. Sladký: Bounds on Discrete Dynamic Programming Recursions II - Polynomial Bounds on Problems with Block-Triangular Structure.Submitted to Kybernetika.
Reference: [19] K. Sladký: On Functional Equations of Discrete Dynamic Programming with Non-Negative Matrices.Research Report No. 900, Institute of Information Theory and Automation, Prague 1978.
Reference: [20] A. F. Veinott, Jr.: Discrete Dynamic Programming with Sensitive Discount Optimality Criteria.Ann. Math. Stat. 40 (1969), 5,1635-1660. Zbl 0183.49102, MR 0256712
Reference: [21] W. H. M. Zijms: On Nonnegative Matrices in Dynamic Programming I.Memorandum Cosor 79-10, Eindhoven University of Technology, Eindhoven 1979.
Reference: [22] W. H. M. Zijms: Maximizing the Growth of the Utility Vector in a Dynamic Programming Model.Memorandum Cosor 79-11, Eindhoven University of Technology, Eindhoven 1979.
.

Files

Files Size Format View
Kybernetika_16-1980-6_4.pdf 1.323Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo