Previous |  Up |  Next

Article

Title: Estimation of discontinuous parameters in general nonautonomous parabolic systems (English)
Author: Ackleh, Azmy S.
Author: Fitzpatrick, Ben G.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 6
Year: 1996
Pages: 543-556
.
Category: math
.
MSC: 65J20
MSC: 65M30
idZBL: Zbl 1043.65512
idMR: MR1438104
.
Date available: 2009-09-24T19:05:29Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125367
.
Reference: [1] A. S. Ackleh, B. G. Fitzpatrick: Estimation of time dependent parameters in general parabolic evolution systems.J. Math. Anal. Appl. 203 (1996), 464-480. Zbl 0869.35047, MR 1410934
Reference: [2] A. S. Ackleh, B. G. Fitzpatrick: Estimation of temporally discontinuous parameters in general parabolic evolution systems.In: Proceedings of the 3rd IEEE Mediterranean Symposium on New Directions in Control and Automation, vol. 1, pp. 280-286.
Reference: [3] H. T. Banks: Computational techniques for inverse problems in size structured stochastic population models.In: Control of Partial Differential Equations (A. Bermudez, ed.), (Lecture Notes in Control and Inform. Sci. 114), Springer-verlag, Berlin 1989, pp. 3-10. Zbl 0716.93062, MR 0987961
Reference: [4] H. T. Banks L. W. Botsford F. Kappel, C. Wang: Modeling and estimation in size structured population models.In: Mathematical Ecology, Proceeding of the Autumn Course Research Seminars (T. G. Hallam, L.J. Gross and S. A. Levin, eds.), World Scientific, 1988, pp. 521-541. MR 1040350
Reference: [5] H. T. Banks, J. M. Crowley: Parameter Estimation for Distributed Systems Arising in Elasticity.LCDS Report No. 81--24, Brown University. In: Proc. Symposium on Engineering Sciences and Mechanics, National Cheng Kung University, Tainan 1981, pp. 158-177.
Reference: [6] H. T. Banks J. M. Crowley, I. G. Rosen: Methods for the identification of material parameters in distributed models for flexible structures.Mat. Apl. Comput. 5 (1986), 2, 139-168. MR 0884998
Reference: [7] H. T. Banks, K. Ito: A unified framework for approximation in inverse problems for distributed parameter systems.Control Theory Advanced Technology 4 (1988), 1, 73-90. MR 0941397
Reference: [8] H. T. Banks, K. Kunisch: Estimation Techniques for Distributed Parameter Systems.Birkhäuser, Boston--Basel 1989. Zbl 0695.93020, MR 1045629
Reference: [9] V. Barbu: Convexity and optimization in Banach spaces.Editura Academiei, Holland 1986. Zbl 0594.49001
Reference: [10] C. Canuto, A. Quateroni: Approximation results for orthogonal polynomials in Sobolev spaces.Math. Comp. 38 (1982), 157, 67-86. MR 0637287
Reference: [11] O. Diekmann M. Gyllenberg, H. R. Thieme: Perturbing evolutionary systems by step responses and cumulative outputs.Differential Integral Equations 8 (1995), 1205-1244. MR 1325554
Reference: [12] N. Dunford, T. Schwartz: Linear Operators Part I: General Theory.Interscience Publishers, New York 1958.
Reference: [13] E. Giusti: Minimal Surfaces and Functions of Bounded Variations.Birkhäuser, Boston--Basel 1976. MR 0775682
Reference: [14] S. Gutman: Identification of discontinuous parameters in flow equations.SIAM J. Control Optim. 28 (1990), 1049-1060. Zbl 0734.35152, MR 1064718
Reference: [15] C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge Press, Cambridge 1987. Zbl 0628.65098, MR 0925005
Reference: [16] P. K. Lamm: Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation.SIAM J. Control Optim. 25 (1987), 18-37. Zbl 0612.93014, MR 0872448
Reference: [17] P. K. Lamm, K. A. Murphy: Estimation of discontinuous coefficients and boundary parameters for hyperbolic systems.Quart. Appl. Math. 46 (1988), 1-22. Zbl 0645.65087, MR 0934677
.

Files

Files Size Format View
Kybernetika_32-1996-6_3.pdf 869.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo