Previous |  Up |  Next

Article

Title: Conditional independence and its representations (English)
Author: Pearl, Judea
Author: Geiger, Dan
Author: Verma, Thomas
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 25
Issue: 7
Year: 1989
Pages: 33-44
.
Category: math
.
MSC: 68T01
MSC: 68T30
idMR: MR1014699
.
Date available: 2009-09-24T18:16:09Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125413
.
Reference: [1] C. Beeri: On the membership problem for functional and multivalued dependencies in relational database.ACM Trans. Database Systems 5 (1980), 3, 241-249.
Reference: [2] C. Beeri R. Fagin, R. A. Howard: A complete axiomatization of functional dependencies and multi-valued dependencies in database relations.In: Proceedings, 1977 ACM SIGMOD Internat. Conference on Management of Data, Toronto, Canada 1977, pp. 47-61.
Reference: [3] H. Cramer: Mathematical Methods of Statistics.Princeton Univ. Press, Princeton, N. J. 1946. Zbl 0063.01014, MR 0016588
Reference: [4] A. P. Dawid: Conditional independence in statistical theory.J. Roy. Statist. Soc. Ser. B 41 (1979), 1,1-31. Zbl 0408.62004, MR 0535541
Reference: [5] R. Fagin: Multivalued dependencies and a new form for relational databases.ACM Trans. Database Systems 2 (1977), 3, 262-278.
Reference: [6] W. Feller: An Introduction to Probability Theory and Its Applications (Chapter XV).John Wiley and Sons, New York 1968. MR 0228020
Reference: [7] D. Geiger: Towards the Formalization of Informational Dependencies.Technical Report R-102, UCLA Cognitive Systems Laboratory, December 1987.
Reference: [8] D. Geiger A. Paz, J. Pearl: Axioms and Algorithms for Inferences Involving Probabilistic Independence.Technical Report R-119, January 1989.
Reference: [9] D. Geiger, J. Pearl: On the logic of causal models.In: Proc. of the 4th Workshop on Uncertainty in AI, St. Paul, Minn., August 1988, pp. 136-147.
Reference: [10] D. Geiger, J. Pearl: Logical and Algorithmic Properties of Conditional Independence.Technical Report 870066 (R-97), UCLA Cognitive Systems Laboratory, February 1988. In: Proc. of Workshop on Statistics and AI, Ft. Lauderdale, Fl., January 1989, 19-1 -- 19-10.
Reference: [11] D. Geiger T. Verma, J. Pearl: Identifying Independence in Bayesian Networks.Technical Report R-116, UCLA Cognitive Systems Laboratory.
Reference: [12] R. A. Howard, J. E. Matheson: Influence Diagrams.In: Principles and Applications of Decision Analysis, Strategic Decisions Group, Menlo Park, CA 1981.
Reference: [13] V. Isham: An introduction to spatial point processes and Markov random fields.International. Statist. Rev. 49 (1981), 21-43. Zbl 0457.60078, MR 0623008
Reference: [14] S. L. Lauritzen: Lectures on Contingency Tables.University of Aalborg Press, Aalborg, Denmark 1982.
Reference: [15] J. S. Meditch: Stochastic Optimal Linear Estimation and Control.McGraw-Hill, New York 1969. Zbl 0225.93045
Reference: [16] S. M. Olmsted: On Representing and Solving Decision Problems.Ph. D. Thesis, EES Dept., Stanford University, Stanford, CA 1983.
Reference: [17] J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Morgan Kaufmann, San Mateo, CA 1988. MR 0965765
Reference: [18] J. Pearl D. Geiger, T. Verma: The logic of influence diagrams.In: Proceedings of the Conference on Influence Diagrams, Berkeley, CA, May 1988.
Reference: [19] J. Pearl, A. Paz: GRAPHOIDS: a Graph-based Logic for Reasoning about Relevance Relations.Technical Report 850038 (R-52), UCLA Computer Science Department, October 1985; also Proceedings, ECAI-86, Brighton, U. K. June 1986.
Reference: [20] J. Pearl, T. Verma: The logic of representing dependencies by directed acyclic graphs.In: Proceedings AAA-I, Seattle, Washington, July 1987, pp. 374-379.
Reference: [21] R. D. Shachter: Evaluating influence diagrams.Oper. Res. 34 (1986), 6, 871-882. MR 0886655
Reference: [22] R. D. Shachter: Probabilistic inference and influence diagrams.Oper. Res. 36 (1988), 4, 589-604. Zbl 0651.90043
Reference: [23] G. Shafer P. P. Shenoy, K. Mellouli: Propagating belief functions in qualitative Markov trees.Internat. J. of Approximate Reasoning 1 (1988), 4, 349-400. MR 0965393
Reference: [24] J. Q. Smith: Influence Diagrams for Statistical Modeling.Technical Report No. 117, Department of Statistics, University of Warwick, Coventry, England, June 1987.
Reference: [25] M. Studený: Attempts at axiomatic description of conditional independence.In: Proceedings of the Workshop on Uncertainty Processing in Expert Systems. Kybernetika 25 (1989), Supplement to No. 1-3, pp. 65-72. MR 1014703
Reference: [26] T. S. Verma: Causal Networks: Semantics and Expressiveness.Technical Report R-65, UCLA Cognitive Systems Laboratory, 1986; also in Proceedings of the 4th Workshop on Uncertainty in AI, St. Paul, Minn., August 1988, pp. 352-359.
Reference: [27] T. S. Verma: Some Mathematical Properties of Dependency Models.Technical Report R-103, UCLA Cognitive Systems Laboratory, 1987.
Reference: [28] T. S. Verma: On the Membership Problem in Semi-Graphoids.Technical Report R-115, UCLA Cognitive Systems Laboratory, 1988.
Reference: [29] T. Verma, J. Pearl: Causal networks: semantics and expressiveness.In: Proceedings of the 4th Workshop on Uncertainty in AI, St. Paul, Min. August 1988, pp. 352-359.
.

Files

Files Size Format View
Kybernetika_25-1989-7_6.pdf 629.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo