Previous |  Up |  Next

Article

Title: On the capacity of asymptotically mean stationary channels (English)
Author: Šujan, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 17
Issue: 3
Year: 1981
Pages: 222-233
.
Category: math
.
MSC: 94A24
MSC: 94A40
idZBL: Zbl 0483.94009
idMR: MR628210
.
Date available: 2009-09-24T17:21:05Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125431
.
Reference: [1] R. J. Fontana R. M. Gray, J. C. Kieffer: Asymptotically mean stationary channels.(preprint). MR 0619116
Reference: [2] R. M. Gray, J. C. Kieffer: Asymptotically mean stationary measures.(submitted to Annals of Prob.). Zbl 0447.28014
Reference: [3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels.IEEE Trans, on Inform. Theory IT-25 (1979), 292-306. MR 0528007
Reference: [4] K. Jacobs: Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle.Math. Annalen 757(1959), 125-135. Zbl 0089.33903, MR 0128003
Reference: [5] A. I. Khinchine: Mathematical Foundations of Information Theory.Dover, New York 1957. MR 0092709
Reference: [6] J. Nedoma: On non-ergodic channels.Trans. Second Prague Conf. Inform. Theory etc., NČSAV, Prague 1960, 143-181. Zbl 0096.11101, MR 0129055
Reference: [7] K. R. Parthasarathy: On the integral representation of the rate of transmission of a stationary channel.Ill. J. Math. 2 (1961), 299-305. Zbl 0100.33903, MR 0121259
Reference: [8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise.Sankhya A 25 (1963), 75-84. Zbl 0119.34003, MR 0173568
Reference: [9] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets.Trans. Third Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, 1980, 201-206.
Reference: [10] Š. Šujan: Channels with additive asymptotically mean stationary noise.Kybernetika 17 (1981), 1, 1-15. MR 0629345
Reference: [11] K. Winkelbauer: Channels with finite past history.Trans. Second Prague Conf. Infor. Theory etc., NČSAV, Prague 1960, 685-831. Zbl 0161.16904, MR 0129056
Reference: [12] K. Winkelbauer: On discrete information sources.Trans. Third Prague Conf. Inform. Theory etc., NČSAV, Prague 1964, 765-830. Zbl 0126.35702, MR 0166000
Reference: [13] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources.Kybernetika 6 (1970), 127-148. Zbl 0245.94013, MR 0275979
Reference: [14] K. Winkelbauer: On the coding theorem for decomposable discrete information channels I.Kybernetika 7 (1971), 109-123. Zbl 0244.94006, MR 0300751
Reference: [15] K. Winkelbauer: On the coding theorem for decomposable discrete information channels II.Kybernetika 7(1971), 230-255. MR 0300751
Reference: [16] K. Winkelbauer: On the regularity condition for decomposable communication channels.Kybernetika 7 (1971), 314-327. Zbl 0244.94007, MR 0349272
Reference: [17] K. Winkelbauer: On the capacity of decomposable channels.Trans. Sixth Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903 - 914. Zbl 0298.94026, MR 0371509
Reference: [18] J. Wolfowitz: Coding Theorems of Information Theory.Sec. ed., Springer-Verlag, Berlin 1964. Zbl 0132.39704, MR 0176851
.

Files

Files Size Format View
Kybernetika_17-1981-3_2.pdf 590.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo