Previous |  Up |  Next

Article

Title: Generalization of discrimination-rate theorems of Chernoff and Stein (English)
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 26
Issue: 4
Year: 1990
Pages: 273-288
.
Category: math
.
MSC: 62B10
MSC: 62B99
MSC: 62F03
MSC: 62F05
MSC: 62F15
idZBL: Zbl 0727.62026
idMR: MR1080281
.
Date available: 2009-09-24T18:19:38Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125435
.
Reference: [1] P. H. Algoet, T.M. Cover: A sandwich proof of the Shannon-McMillan-Breiman theorem.Ann. Probab. 16 (1988), 899-909. Zbl 0653.28013, MR 0929085
Reference: [2] A. Bhattacharyya: On some analogous to the amount of information and their uses in statistical estimation.Sankhya 8 (1946), 1-14. MR 0020242
Reference: [3] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations.Ann. Math. Statist. 23 (1952), 493-507. MR 0057518
Reference: [4] H. Chernoff: Large sample theory: Parametric case.Ann. Math. Statist. 27 (1956), 1 - 22. Zbl 0072.35703, MR 0076245
Reference: [5] R. S. Ellis: Large deviations for a general class of random vectors.Ann. Probab. 12 (1984), 1-12. Zbl 0534.60026, MR 0723726
Reference: [6] R. S. Ellis: Entropy, Large Deviations, and Statistical Mechanics.Springer-Verlag. Berlin-Heidelberg-New York 1985. Zbl 0566.60097
Reference: [7] I. I. Gikhman, A. V. Skorokhod: Stochastic Differential Equations (in Russian).Naukova Dumka, Kiev 1986.
Reference: [8] J. Hájek: A property of J-divergences or marginal probability distributions.Czechoslovak Math. J. 8 (1958), 460-463. MR 0099712
Reference: [9] J. Hájek: On a property of normal distributions of an arbitrary stochastic process.Czechoslovak Math. J. 8 (1958), 610-618. MR 0104290
Reference: [10] A. Janssen: Asymptotic properties of Neyman-Pearson test for infinite Kullback-Leibler information.Ann. Statist. 14 (1986), 1068-1079. MR 0856806
Reference: [11] M. Janžura: Divergences of Gauss-Markov random fields with application to statistical inference.Kybernetika 24 (1988), 6, 401 - 412. MR 0975850
Reference: [12] S. Kakutani: On equivalence of infinite product measures.Ann. of Math. 49 (1948), 214 - 226. Zbl 0030.02303, MR 0023331
Reference: [13] E. I. Kolomietz: Asymptotic behaviour of type II errors of Neyman-Pearson test (in Russian).Teor. Veroyatnost. i Primenen. 33 (1986), 503 - 522.
Reference: [14] S. H. Koopmans: Asymptotic rate of discrimination for Markov processes.Ann. Math. Statist. 31 (1960), 982-994. Zbl 0096.12603, MR 0119368
Reference: [15] O. Kraft, D. Plachky: Bounds for the power of likelihood ratio test and their asymptotic properties.Ann. Math. Statist. 41 (1970), 1646-1654. MR 0272101
Reference: [16] S. Kullback J. C Keegel, and J. H. Kullback: Topics in Statistical Information Theory.Springer-Verlag, Berlin-Heidelberg-New York 1987. MR 0904477
Reference: [17] H. Künsch: Thermodynamics and statistical analysis of Gaussian random fields.Z. Wahrsch. verw. Geb. 58 (1981) 407-421. MR 0639149
Reference: [18] E. L. Lehman: Testing Statistical Hypotheses.J. Wiley, New York 1959. MR 0852406
Reference: [19] F. Liese: Hellinger integrals of diffusion processes.Statistics 17 (1986), 63-78. Zbl 0598.60042, MR 0827946
Reference: [20] F. Liese, I. Vajda: Convex Statistical Distances.Teubner, Leipzig 1987. Zbl 0656.62004, MR 0926905
Reference: [21] J. Mémin, A. N. Shiryayev: Distances de Hellinger-Kakutani des lois correspondant á acroissements indépendants.Z. Wahrsch. verw. Geb. 70 (1985), 67-89. MR 0795789
Reference: [22] T. Nemetz: On the $\alpha$-divergence rate for Markov-dependent hypotheses.Problems Control Inform. Theory 5(1974), 147-155. Zbl 0303.62005, MR 0426254
Reference: [23] C M. Newman: The inner product of path space measures corresponding to random processes with independent increments.Bull. Amer. Math. Soc. 78 (1982), 268 - 272. MR 0290453
Reference: [24] C M. Newman: The orthogonality of independent increment processes.In: Topics in Probability Theory (D. W. Strook, S. R. S. Varadhan, eds.), Convent Inst, of Math. Sciences, New York 1973, pp. 93-111. Zbl 0269.60055, MR 0448532
Reference: [25] C M. Newman, B. W. Stuck: Chernoff bounds for discriminating between two Markov processes.Stochastics 2 (1979), 139-153. Zbl 0408.62070, MR 0528906
Reference: [26] J. Oosterhooff, W. R. van Zwett: A note on contiguity and Hellinger distance.In: Contributions to Statistics (J. Hájek Memorial Volume, J. Jurečková, ed.), Reidel, Dordrecht 1979. MR 0561267
Reference: [27] A. Perez: Notions generalises d'incertitude, d'entropie et d'information du point de vue de la theorie de martingales.In: Trans. 1st Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci., Prague 1957, pp. 183 -206. MR 0099889
Reference: [28] A. Perez: Generalization of ChernofTs result on the asymptote discernibility of two random processes.Colloq. Math. Soc. Janos Bolyai 9 (1974), 619 - 632. MR 0388596
Reference: [29] M. S. Pinsker: Information and Information Stability of Random Variables and Processes.Holden-Day, San Francisco 1964. Zbl 0125.09202, MR 0213190
Reference: [30] A. Rényi: On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Probab.Theory Math. Statist., Vol. 1, Berkeley Univ. Press, Berkeley 1961, pp. 447-561. MR 0132570
Reference: [31] I. Vajda: Limit theorems for total variation of cartesian product measures.Studia Sci. Math. Hungar. 6 (1971), 317-333. MR 0310950
Reference: [32] I. Vajda: Theory of Statistical Inference and Information.Kluwer, Dordrecht-Boston 1989. Zbl 0711.62002
Reference: [33] A. Wald: Statistical Decision Functions.J. Wiley, New York 1961. MR 0036976
.

Files

Files Size Format View
Kybernetika_26-1990-4_1.pdf 706.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo