Title:
|
Numerical algorithm for nonsmooth stabilization of triangular form systems (English) |
Author:
|
Čelikovský, Sergej |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
32 |
Issue:
|
3 |
Year:
|
1996 |
Pages:
|
261-274 |
. |
Category:
|
math |
. |
MSC:
|
93B40 |
MSC:
|
93C10 |
MSC:
|
93D15 |
idZBL:
|
Zbl 0873.93074 |
idMR:
|
MR1438219 |
. |
Date available:
|
2009-09-24T19:02:33Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125516 |
. |
Reference:
|
[1] D. Aeyels: Local and global controllability for nonlinear systems.Systems Control Lett. 5 (1984), 19-26. Zbl 0552.93009, MR 0768710 |
Reference:
|
[2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control.Systems Control Lett. 5 (1985), 289-294. Zbl 0569.93056, MR 0791542 |
Reference:
|
[3] P. Brunovský: A classification of linear controllable systems.Kybernetika 6 (1970), 173-180. MR 0284247 |
Reference:
|
[4] J. M. Coron L. Praly, A. Teel: Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques.In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348. MR 1448452 |
Reference:
|
[5] S. Čelikovský: Topological linearization of nonlinear systems: Application to the nonsmooth stabilization.In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44. |
Reference:
|
[6] S. Čelikovský: Global linearization of nonlinear systems -- a survey.In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137. MR 1364424 |
Reference:
|
[7] S. Čelikovský: Topological equivalence and topological linearization of controlled dynamical systems.Kybernetika 31 (1995), 141-150. MR 1334506 |
Reference:
|
[8] S. Čelikovský: On the relation between nonsmooth linearization of continuous and discrete time systems.In: Proc. of the third ECC'95, Rome 1995, pp. 643-648. |
Reference:
|
[9] S. Čelikovský, H. Nijmeijer: Equivalence of nonlinear systems to triangular form: the singular case.Systems Control Lett. 27 (1996), 3, 135-144. MR 1387097 |
Reference:
|
[10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask.In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226. Zbl 0607.93027, MR 0862326 |
Reference:
|
[11] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue.In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787. Zbl 0716.93046 |
Reference:
|
[12] B. Jakubczyk, W. Respondek: On linearization of control systems.Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522. Zbl 0489.93023, MR 0629027 |
Reference:
|
[13] A. Isidori: Nonlinear Control Systems: An Introduction.Springer-Verlag, Berlin 1989. MR 1229759 |
Reference:
|
[14] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems.IEEE Control Systems Magazine 1993, 47-57. |
Reference:
|
[15] T. Kailath: Linear Systems.Prentice Hall, Englewood Cliffs, N.J. 1980. Zbl 0454.93001, MR 0569473 |
Reference:
|
[16] M. Kawski: Stabilization of nonlinear systems in the plane.Systems Control Lett. 12 (1989), 169-175. Zbl 0666.93103, MR 0985567 |
Reference:
|
[17] H. Nijmeijer, A. J. van der Schaft: Nonlinear Dynamical Control Systems.Springer-Verlag, Berlin 1990. Zbl 0701.93001, MR 1047663 |
Reference:
|
[18] C. Simoes H. Nijmeijer, J. Tsinias: Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems.Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear. MR 1388127 |
Reference:
|
[19] E. D. Sontag: Feedback stabilization of nonlinear systems.In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81. Zbl 0735.93063, MR 1115377 |
Reference:
|
[20] W. Respondek: Geometric methods in linearization of control systems.Banach Center Publ. 14 (1985), 453-467. Zbl 0573.93028, MR 0851243 |
Reference:
|
[21] W. Respondek: Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems.In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283. Zbl 0605.93033, MR 0862329 |
Reference:
|
[22] L. A. Zadeh, C. A. Desoer: Linear Systems Theory.McGraw-Hill, New York 1963. |
. |