Previous |  Up |  Next

Article

Title: Numerical algorithm for nonsmooth stabilization of triangular form systems (English)
Author: Čelikovský, Sergej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 3
Year: 1996
Pages: 261-274
.
Category: math
.
MSC: 93B40
MSC: 93C10
MSC: 93D15
idZBL: Zbl 0873.93074
idMR: MR1438219
.
Date available: 2009-09-24T19:02:33Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125516
.
Reference: [1] D. Aeyels: Local and global controllability for nonlinear systems.Systems Control Lett. 5 (1984), 19-26. Zbl 0552.93009, MR 0768710
Reference: [2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control.Systems Control Lett. 5 (1985), 289-294. Zbl 0569.93056, MR 0791542
Reference: [3] P. Brunovský: A classification of linear controllable systems.Kybernetika 6 (1970), 173-180. MR 0284247
Reference: [4] J. M. Coron L. Praly, A. Teel: Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques.In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348. MR 1448452
Reference: [5] S. Čelikovský: Topological linearization of nonlinear systems: Application to the nonsmooth stabilization.In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44.
Reference: [6] S. Čelikovský: Global linearization of nonlinear systems -- a survey.In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137. MR 1364424
Reference: [7] S. Čelikovský: Topological equivalence and topological linearization of controlled dynamical systems.Kybernetika 31 (1995), 141-150. MR 1334506
Reference: [8] S. Čelikovský: On the relation between nonsmooth linearization of continuous and discrete time systems.In: Proc. of the third ECC'95, Rome 1995, pp. 643-648.
Reference: [9] S. Čelikovský, H. Nijmeijer: Equivalence of nonlinear systems to triangular form: the singular case.Systems Control Lett. 27 (1996), 3, 135-144. MR 1387097
Reference: [10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask.In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226. Zbl 0607.93027, MR 0862326
Reference: [11] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue.In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787. Zbl 0716.93046
Reference: [12] B. Jakubczyk, W. Respondek: On linearization of control systems.Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522. Zbl 0489.93023, MR 0629027
Reference: [13] A. Isidori: Nonlinear Control Systems: An Introduction.Springer-Verlag, Berlin 1989. MR 1229759
Reference: [14] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems.IEEE Control Systems Magazine 1993, 47-57.
Reference: [15] T. Kailath: Linear Systems.Prentice Hall, Englewood Cliffs, N.J. 1980. Zbl 0454.93001, MR 0569473
Reference: [16] M. Kawski: Stabilization of nonlinear systems in the plane.Systems Control Lett. 12 (1989), 169-175. Zbl 0666.93103, MR 0985567
Reference: [17] H. Nijmeijer, A. J. van der Schaft: Nonlinear Dynamical Control Systems.Springer-Verlag, Berlin 1990. Zbl 0701.93001, MR 1047663
Reference: [18] C. Simoes H. Nijmeijer, J. Tsinias: Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems.Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear. MR 1388127
Reference: [19] E. D. Sontag: Feedback stabilization of nonlinear systems.In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81. Zbl 0735.93063, MR 1115377
Reference: [20] W. Respondek: Geometric methods in linearization of control systems.Banach Center Publ. 14 (1985), 453-467. Zbl 0573.93028, MR 0851243
Reference: [21] W. Respondek: Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems.In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283. Zbl 0605.93033, MR 0862329
Reference: [22] L. A. Zadeh, C. A. Desoer: Linear Systems Theory.McGraw-Hill, New York 1963.
.

Files

Files Size Format View
Kybernetika_32-1996-3_4.pdf 930.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo