Previous |  Up |  Next

Article

Title: Approximate stable multidimensional polynomial factorization into linear $m$-D polynomial factors (English)
Author: Mastorakis, Nikos E.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 3
Year: 1996
Pages: 275-288
.
Category: math
.
MSC: 93B17
MSC: 93B25
MSC: 93C35
idZBL: Zbl 0880.93022
idMR: MR1438220
.
Date available: 2009-09-24T19:02:40Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125517
.
Reference: [1] K. M. Brown: Computer Oriented Methods for Fitting Tabular Data in the Linear and Nonlinear Least Squares Sense.Research Report No. 72-13, Department of Computer, Information and Control Sciences, University of Minnesota 1972.
Reference: [2] K. M. Brown, J. E. Dennis: Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximations.Numer. Math. 18 (1972), 289-297. MR 0303723
Reference: [3] R. A. De Carlo J. Murray, R. Saeks: Multivariable Nyquist theory.Internat. J. Control 25 (1976), 5, 657-675. MR 0449829
Reference: [4] P. Delsarte Y. V. Genin, Y. G. Kamp: A simple proof of Rudin's multivariable stability theorem.IEEE Trans. Acoust. Speech Signal Process. ASSP-28 (1980), 6, 701-705. MR 0604825
Reference: [5] T. Kaczorek: Two-Dimensional Linear Systems.Lecture Notes in Control and Inform. Sci. 68. Springer-Verlag, Berlin 1985. Zbl 0593.93031, MR 0870854
Reference: [6] K. Levenberg: A method for the solution of certain non-linear problems in least squares.Quart. Appl. Meth. 2 (1944), 164-168. Zbl 0063.03501, MR 0010666
Reference: [7] D. W. Marquardt: An algorithm for least-squares estimation of nonlinear parameters.SIAM J. 11 (1963), 2. Zbl 0112.10505, MR 0153071
Reference: [8] N. E. Mastorakis: Approximate and stable separable polynomial factorization.Found. Comput. Decision Sci. 21 (1996), 1, 55-64. Zbl 0861.93020, MR 1399859
Reference: [9] N. E. Mastorakis: Multidimensional Polynomials.PҺ.D. Thesis. National Technical University of Athens 1992. Zbl 0781.93048
Reference: [10] N. E. Mastorakis, N. J. Theodorou: Operators' method for $m$-D polynomials factorization.Found. Comput. Decision Sci. 15 (1990), 3-4, 159-172. MR 1114659
Reference: [11] N. E. Mastorakis, N. J. Theodorou: Approximate factorization of multidimensional polynomials depending on a parameter $\lambda$.Bull. Electronics of the Polish Academy 40 (1992), 1, 47-51. Zbl 0781.93048
Reference: [12] N. E. Mastorakis, N. J. Theodorou: State-space model factorization in $m$-dimensions.Appl. in Stability. Found. Comput. Decision Sci. 17 (1992), 1, 55-61. Zbl 0814.93036, MR 1174151
Reference: [13] N. E. Mastorakis, N. J. Theodorou: Simple, group and approximate factorization of multidimensional polynomials.In: IEEE-Mediterranean Conference on New Directions in Control Theory and Applications. Session: 2-D Systems, Chania 1993.
Reference: [14] N. E. Mastorakis, N. J. Theodorou: Exact and approximate multidimensional polynomial factorization.Application on measurement processing. Found. Comput. Decision Sci. 19 (1994), 4, 307-317. Zbl 0827.93036, MR 1319944
Reference: [15] N. E. Mastorakis, N. J. Theodorou, S. G. Tzafestas: Multidimensional polynomial factorization in linear $m$-D factors.Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. MR 1194285
Reference: [16] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A simple multidimensional polynomial factorization method.In: IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, pp. VII.B.1-1.
Reference: [17] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A reduction method for multivariable polynomial factorization.In: International Symposium on Signal Processing, Robotics and Neural Networks (SPRANN-94), IMACS-IEEE. Proceedings Session 2-D Systems, Lille 1994.
Reference: [18] W. Murray (ed.): Numerical Methods for Unconstrained Optimization.Academic Press, New York 1972.
Reference: [19] J. Murray: Another proof and shaгpening of Huang's theorem.IEEE Trans. Acoust. Speech Signal Process. ASSP-25 (1977), 581-582.
Reference: [20] M. Powell: Problems Related to Unconstrained Optimization.Chapter in [18].
Reference: [21] J. L. Shanks S. Treital, J. H. Justice: Stability and synthesis of two dimensional recursive filters.IEEE Trans. Audio Electroacoust. 20 (1972), 115-208.
Reference: [22] N. J. Theodorou, S. G. Tzafestas: Reducibility and factorizability of multivariable polynomials.Control Theory Adv. Tech. 1 (1985), 25-46.
Reference: [23] S. G. Tzafestas (ed.): Multidimensional Systems: Techniques and Applications.Marcel Dekker, New York 1986. Zbl 0624.00025
.

Files

Files Size Format View
Kybernetika_32-1996-3_5.pdf 974.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo