[1] K. Winkelbauer: 
On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255. 
MR 0300751[2] J. C. Kieffer: 
A general formula for the capacity of a stationary nonanticipatory channel. Inform. and Control 26 (1974), 381-391. 
MR 0384324[3] R.  M.  Gray D. S. Ornstein: 
Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 25 (1979), 292-306. 
MR 0528007[4] J. Wolfowitz: 
Coding Theorems of Information Theory. 2nd ed. Springer-Verlag, Berlin - Gottingen -New York 1964. 
MR 0176851 | 
Zbl 0132.39704[5] J. C. Kieffer: Block coding for a stationary channel satisfying a weak continuity condition. (to appear).
[6] R. M. Gray J. C. Kieffer: 
Mutual information rate, distortion and quantization in metric spaces. IEEE Trans. Inform. Theory 26 (1980), 412-422. 
MR 0581788[7] Š. Šujan: 
Channels with additive asymptotically mean stationary noise. Kybernetika 17 (1981), 1, 1-15. 
MR 0629345[8] P.  Billingsley: 
Convergence of Probability  Measures. J.  Wiley,  New York-London-Sydney-Toronto 1968. 
MR 0233396 | 
Zbl 0172.21201[9] J. C. Kieffer: 
On the transmission of Bernoulli sources over stationary channels. Ann. Prob. 8 (1980), 942-961. 
MR 0586778 | 
Zbl 0452.94012[10] Š. Šujan: 
A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp. 
MR 0465531[12] R. L. Dobrushin: 
A general formulation of the basic Shannon theorem of information theory. (in Russian). Uspehi mat. nauk 14 (1959), 3-104. 
MR 0107574[13] K. Winkelbauer: 
On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 2, 127-148. 
MR 0275979 | 
Zbl 0245.94013[14] R. M. Gray L. D. Davisson: 
Source coding without the ergodic assumption. IEEE Trans. Inform. Theory 20 (1974), 502-516. 
MR 0476163[15] Š. Šujan: Block transmissibility and quantization. (submitted).
[16] F. Topsøe: 
Preservation of weak convergence under mappings. Ann.  Math. Statist. 38 (1967), 1661-1665. 
MR 0219097[17] Š. Šujan: 
On the capacity of asymptotically mean stationary channels. Kybernetika 17 (1981), 3, 222-233. 
MR 0628210[19] J. C. Kieffer: 
Some universal noiseless multiterminal source coding theorems. Inform. and Control 46 (1980), 93-107. 
MR 0600773 | 
Zbl 0452.94013[20] K. Winkelbauer: 
On discrete information sources. Trans. 3rd Prague Conf. Inform. Theory, NČSAV Prague 1964, 765-830. 
MR 0166000 | 
Zbl 0126.35702[21] K. Winkelbauer: 
On the capactiy of decomposable channels. Trans. 6th Prague Conf. Inform. Theory, Academia, Prague 1973, 903-914. 
MR 0371509[22] R. M. Gray D. L. Neuhoff P. C. Shields: 
A generalization of Ornstein's d-distance with applications to information theory. Ann. Prob. 3 (1975), 315-328. 
MR 0368127