Previous |  Up |  Next


Title: Geometric methods in the theory of singular 2-D linear systems (English)
Author: Conte, Giuseppe
Author: Perdon, Anna M.
Author: Kaczorek, Tadeusz
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 3
Year: 1991
Pages: 263-270
Category: math
MSC: 93B27
MSC: 93C05
idZBL: Zbl 0746.93021
idMR: MR1116840
Date available: 2009-09-24T18:25:40Z
Last updated: 2012-06-05
Stable URL:
Reference: [1] P. Bernhard: On singular implicit linear dynamical systems.SIAM J. Control Optim. 20 (1982), 612-633. Zbl 0491.93004, MR 0667644
Reference: [2] G. Conte, A. M. Perdon: A geometric approach to the theory of 2D-systems.IEEE Trans. Automat. Control AC-33 (1988), 10, 946 - 950. MR 0959020
Reference: [3] G. Conte, A. M. Perdon: Geometric notions in the theory of 2D-systems.In: Linear Circuits, Systems and Signal Processing: Theory and Application (C Byrnes and C Martin, eds.), North-Holland, Amsterdam 1988. Zbl 0675.93023
Reference: [4] G. Conte, A. M. Perdon: On the geometry of 2D systems.Proc. IEEE Internat. Symp. on Circuits and Systems Helsinki - Finlandia, 1988. Zbl 0695.93048
Reference: [5] E. Fornasini, G. Marchesini: Doubly indexed dynamical systems: State space models and structural properties.Math. Systems Theory 12 (1978), 59 - 72. Zbl 0392.93034, MR 0510621
Reference: [6] T. Kaczorek: $(A, B)$-invariant subspaces and V-invariant subspaces for Fornasini-Marchesini's model.Bull. Polish Acad. Sci. Tech. Sci. 35 (1988).
Reference: [7] T. Kaczorek: Singular general model of 2D systems and its solutions.IEEE Trans. Automat. Control AC-33 (1988), 1060-1061. MR 0965201
Reference: [8] T. Kaczorek: General response formula and minimum energy control for the general singular model of 2D systems.IEEE Trans. Automat. Control AC-35 (1990), 433 - 436. MR 1047996
Reference: [9] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem.Bull. Polish Acad. Sci. Tech. Sci. 37 (1989) (in press). Zbl 0721.93045
Reference: [10] F. Lewis: A survey of 2D implicit systems.Proc. IMACS Internat. Symp. on Mathematical an Intelligent Models in System Simulation, Brussels, Belgium 1990.
Reference: [11] F. Lewis W. Marszalek, B. G. Mertzios: Walsh function analysis of 2D generalized continuous systems.IEEE Trans. Automat. Control (to appear, 1990). MR 1073259
Reference: [12] W. Marszalek: Two dimensional state space discrete models for hyperbolic partial differential equations.Appl. Math. Modelling 8 (1984), 11 - 14. Zbl 0529.65039, MR 0734035
Reference: [13] K. Ozcaldiran: Control of Descriptor Systems.Ph. D. Thesis, Georgia Institute of Tech- nology, 1985.
Reference: [14] M. Wohnam: Linear Multivariable Control: a Geometric Approach.Third edition. Springer- Verlag, New York-Berlin-Heidelberg 1985.


Files Size Format View
Kybernetika_27-1991-3_11.pdf 488.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo