Previous |  Up |  Next

Article

Title: On radially extremal digraphs (English)
Author: Gliviak, Ferdinand
Author: Knor, Martin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 1
Year: 1995
Pages: 41-55
Summary lang: English
.
Category: math
.
Summary: We define digraphs minimal, critical, and maximal by three types of radii. Some of these classes are completely characterized, while for the others it is shown that they are large in terms of induced subgraphs. (English)
Keyword: digraphs
Keyword: characterization
Keyword: radius of a digraph
Keyword: a digraph minimal (critical, maximal) by radius
Keyword: induced subgraph
MSC: 05C12
MSC: 05C20
MSC: 05C35
idZBL: Zbl 0837.05053
idMR: MR1336945
DOI: 10.21136/MB.1995.125895
.
Date available: 2009-09-24T21:08:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125895
.
Reference: [1] B. Bollobás: Extremal Graph Theory.Academic Press, London, 1978. MR 0506522
Reference: [2] F. Buckley F. Harary: Distance in Graphs.Addison Wesley, Redwood City, CA, 1990. MR 1045632
Reference: [3] G. Chartrand L. Lesniak: Graphs and Digraphs.(second edition). Wardsworth and Books/Cole, Monteгey, CA, 1986. MR 0834583
Reference: [4] G. Sh. Fridman: On oriented radially critical graphs.Doklady Akad. Nauk SSSR 212 (1973), 565-568. (In Russian.) MR 0412008
Reference: [5] F. Gliviak: On radially critical gгaphs.in: Recent Advances in Graph Theory. Proc. Sympos. Prague 1974, Academia, Prague, 1975, pp. 207-221. MR 0384613
Reference: [6] F. Gliviak M. Knor Ľ. Šoltés: On radially maximal graphs.Australasian J. Comb. 9 (1994), 275-284. MR 1271207
Reference: [7] F. Harary C. Thomassen: Anticritical graphs.Math. Proc. Comb. Phil. Soc. 79 (1976), 11-18. MR 0414439, 10.1017/S0305004100052051
Reference: [8] P. Kyš: On minimal and critical digraphs.In prepaгation.
Reference: [9] E. M. Palmer: Graphical Evolution: An Introduction to the Theory of Random Graphs.John Wiley, New York, 1985. Zbl 0566.05002, MR 0795795
.

Files

Files Size Format View
MathBohem_120-1995-1_4.pdf 824.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo