Previous |  Up |  Next

Article

Title: On $(j,k)$-symmetrical functions (English)
Author: Liczberski, Piotr
Author: Połubiński, Jerzy
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 1
Year: 1995
Pages: 13-28
Summary lang: English
.
Category: math
.
Summary: n the present paper the authors study some families of functions from a complex linear space $X$ into a complex linear space $Y$. They introduce the notion of $(j,k)$-symmetrical function ($k=2,3,\dots$; $j=0,1,\dots,k-1$) which is a generalization of the notions of even, odd and $k$-symmetrical functions. They generalize the well know result that each function defined on a symmetrical subset $U$ of $X$ can be uniquely represented as the sum of an even function and an odd function. (English)
Keyword: $(j,k)$-symmetrical functions
Keyword: holomorphic function
Keyword: integral formulas
Keyword: uniqueness theorem
Keyword: mean value of a function
Keyword: a variant of Schwarz lemma
Keyword: fixed point
Keyword: spectrum of an operator
MSC: 26B40
MSC: 26E15
MSC: 30A10
MSC: 30A99
MSC: 32A99
MSC: 46G20
idZBL: Zbl 0838.30004
idMR: MR1336943
DOI: 10.21136/MB.1995.125897
.
Date available: 2009-09-24T21:08:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125897
.
Reference: [1] J. Dieudonne: Grundzüge der modernen Analysis.II Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972. Zbl 0264.26001, MR 0474358
Reference: [2] W. Fulton J. Harris: Representation theory.Graduate Text Math., Spгinger, 1991. MR 1153249
Reference: [3] E. Janiec: Some uniqueness theorems concerning holomorphic mappings.Demonstratio Math. 23, 4 (1990), 879-892. Zbl 0755.32002, MR 1124740, 10.1515/dema-1990-0407
Reference: [4] R. Mortini: Lösung der Aufgabe 901.El. Math. 39 (1984), 130-131.
Reference: [5] J. Mujica: Complex analysis in Banach spaces.Noгth-Holland, Amsterdam, New York, Oxfoгd. Zbl 0586.46040
Reference: [6] A. Pfluger: Varianten des Schwarzschen Lemma.El. Math. 40 (1985), 46-47. Zbl 0566.30021, MR 0803075
Reference: [7] W. Rudin: The fixed-point sets of some holomorphic maps.Bull. Malaysian Math. Soc. (2) 1 (1978), 25-28. Zbl 0413.32012, MR 0506535
Reference: [8] W. Rudin: Real and complex analysis.(second edition). McGraw-Hill Inc, 1974. Zbl 0278.26001, MR 0344043
.

Files

Files Size Format View
MathBohem_120-1995-1_2.pdf 726.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo