Previous |  Up |  Next

Article

Title: Asymptotic properties of solutions of functional differential systems (English)
Author: Ivanov, Anatolij F.
Author: Marušiak, Pavol
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 2
Year: 1992
Pages: 207-216
Summary lang: English
.
Category: math
.
Summary: In the paper we study the existence of nonoscillatory solutions of the system $x^{(n)}_i(t)=\sum^2_{j=1}p_{ij}(t)f_{ij}(x_j(h_{ij}(t))), n\geq 2, i=1,2$, with the property $lim_{t\rightarrow \infty}x_i(t)/t^{k_i}=const \neq 0$ for some $k_i\in \{1,2,\ldots,n-1\}, i=1,2$. Sufficient conditions for the oscillation of solutions of the system are also proved. (English)
Keyword: functional differential system
Keyword: Schauder-Tichonov fixed point theorem
Keyword: oscillatory and nonoscillatory solutions
Keyword: prescribed asymptotics
Keyword: oscillatory solutions
Keyword: nonoscillatory solutions
MSC: 34C10
MSC: 34K05
MSC: 34K15
MSC: 34K25
MSC: 34K99
idZBL: Zbl 0757.34063
idMR: MR1165898
DOI: 10.21136/MB.1992.125902
.
Date available: 2009-09-24T20:52:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125902
.
Reference: [1] J. Jaroš T. Ҝusano: Oscillation theory of higheг order lineaг functional differential equations of natural type.Hirosh. Math. Ј. 18 (1988), 509-531. MR 0991245, 10.32917/hmj/1206129616
Reference: [2] I. T. Ҝiguradze: On the oscillation of solutions of the equation $d^m u / dt^m + a(t)|u|^n \sgn u = 0.Mat. Sb. 65 (1964), 172-187. (In Russian.)
Reference: [3] Y. Ҝitamura: On nonoscialiatoгy solutions of functional differential equations with general deviating argument.Hirosh. Math. Ј. 8(1978), 49-62. MR 0466865, 10.32917/hmj/1206135559
Reference: [4] P. Marušiak: Oscillation of solutions of nonlinear delay diffeгential equations.Mat. Čas. 4 (1974), 371-380. MR 0399620
Reference: [5] M. Švec: Suг un probléme aux limites.Czech. Mat. 5. 19 (1969), 17-26. MR 0237868
.

Files

Files Size Format View
MathBohem_117-1992-2_12.pdf 1.585Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo