Previous |  Up |  Next

Article

Title: On the inverse problem of the calculus of variations for ordinary differential equations (English)
Author: Krupková, Olga
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 3
Year: 1993
Pages: 261-276
Summary lang: English
.
Category: math
.
Summary: Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given. (English)
Keyword: Lepagean forms
Keyword: variational equations
Keyword: Helmholtz conditions
Keyword: minimal- order Lagrangian
Keyword: local inverse problem to the calculus of variations
Keyword: global inverse problem to the calculus of variations
MSC: 49N45
MSC: 58E30
MSC: 58F05
MSC: 70H03
MSC: 70H35
idZBL: Zbl 0786.58012
idMR: MR1239121
DOI: 10.21136/MB.1993.125932
.
Date available: 2009-09-24T20:59:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125932
.
Reference: [1] I. M. Anderson: The variational bicomplex.Preprint, Department of Mathematics, Utah State University, Logan, Utah, 1989, pp. 289. MR 1188434
Reference: [2] I. M. Anderson аnd T. Duchаmp: On the existence of global variational principles.Am. J. Math. 102 (1980), 781-868. MR 0590637, 10.2307/2374195
Reference: [3] D. Dedecker аnd W.M. Tulczyjew: Spectгal sequences and the inverse problem of the calculus of variations.Internat. Coll. on Diff. Geom. Methods in Math. Physics, Aix-en-Provence Sept. 1989, in: Lectuгe Notes in Math. vol. 836, Springer, Berlin, 1980.
Reference: [4] H. Helmholtz: Über die Physikalische Bedeutung des Prinzips der kleinsten Wirkung.J. für die reine u. angewandte Math. 100 (1987), 137-166.
Reference: [5] L. Klаpkа: Euler-Lagrange expressions and closed two-foгms in higher order mechanics.in: Geometrical Methods in Physics, Pгoc. Conf. on Diff. Geom. and its Appl., Nové Mӗsto na Moravӗ, Czechoslovakia, 1983 (D. Ҟrupka, ed.), J.E. Purkynӗ Univ., Brno, Czechoslovakia, 1984, pp. 149-153. MR 0793205
Reference: [6] D. Krupkа: Some geometric aspects of variational problems in fìbeгed manifolds.Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65.
Reference: [7] D. Krupkа: On the local structure of the Euler-Lagrange mapping of the calculus of variations.in: Proc. Conf. on Diff. Geom. and Its Appl. 1980 (O. Kowalski, ed.), Universita Karlova, Prague, 1981, pp. 181-188. MR 0663224
Reference: [8] D. Krupkа: Lepagean forms in higher order variational theory.in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Pгoc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197-238. MR 0773488
Reference: [9] D. Krupkа: Geometry of lagrangean structuгes 2..Arch. Math. (Bгno) 22 (1986), 211-228. MR 0868536
Reference: [10] D. Krupkа: Geometry of lagrangean structures 3..Proc. Winter School of Abstгact Analysis, Sгní, Czechoslovakia, 1986, Suppl. ai Rend. del Circ. Mat. di Palermo, vol. 14, 1987, pp. 187-224. MR 0920855
Reference: [11] D. Krupka: Variational sequences on fìnite order jet spaces.in: Diffeгential Geometry and Its Applications, Proc. Conf., Brno, Czechoslovakia, 1989 (J. Janyška and D. Krupka, eds.), Woгld Scientific, Singapore, 1990, pp. 236-254. MR 1062026
Reference: [12] O. Krupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity.Arch. Math. (Brno) 22 (1986), 97-120. MR 0868124
Reference: [13] R. Macjuk: On the existence of a lagrangian for a system of ordinary diffeгential equations.Mat. metody fiz.-mech. polja 13 (1981), 30-34. (In Russian.)
Reference: [14] A. Mayer: Die Бxistenzbedingungen eines kinetischen Potentiales.Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896), 519-529.
Reference: [15] Ғ. Takens: A global version of the inverse pгoblem of the całculus of variations.J. Diff. Geom. 14 (1979), 543-562. MR 0600611, 10.4310/jdg/1214435235
Reference: [16] E. Tonti: Variational formulation of nonlinear differential equatюns I, II.Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969), 137-165, 262-278.
Reference: [17] W M. Tulczyjew: Sur la différentielle de Lagrange.C. R. Acad. Sci. Paгis A 280 (1975), 1295-1298. Zbl 0314.58018, MR 0377987
Reference: [18] M. M. Veiberg: Variational Methods in the Theory of Non-Linear Operators.GITL, Moscow, 1959. (In Russian.)
Reference: [19] A. L. Vanderbauwhede: Potential operators and variational principles.Hadronic J. 2 (1979), 620-641. Zbl 0431.47032, MR 0537234
Reference: [20] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory.Soviet Math. Dokl. 19 (1978), 144-148.
Reference: [21] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, II. The nonlinear theory.J. Math. Anal. Appl. 100 (1984), 1-40, 41-129. MR 0739951, 10.1016/0022-247X(84)90071-4
.

Files

Files Size Format View
MathBohem_118-1993-3_5.pdf 1.974Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo