Title:
|
On the inverse problem of the calculus of variations for ordinary differential equations (English) |
Author:
|
Krupková, Olga |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
118 |
Issue:
|
3 |
Year:
|
1993 |
Pages:
|
261-276 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given. (English) |
Keyword:
|
Lepagean forms |
Keyword:
|
variational equations |
Keyword:
|
Helmholtz conditions |
Keyword:
|
minimal- order Lagrangian |
Keyword:
|
local inverse problem to the calculus of variations |
Keyword:
|
global inverse problem to the calculus of variations |
MSC:
|
49N45 |
MSC:
|
58E30 |
MSC:
|
58F05 |
MSC:
|
70H03 |
MSC:
|
70H35 |
idZBL:
|
Zbl 0786.58012 |
idMR:
|
MR1239121 |
DOI:
|
10.21136/MB.1993.125932 |
. |
Date available:
|
2009-09-24T20:59:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125932 |
. |
Reference:
|
[1] I. M. Anderson: The variational bicomplex.Preprint, Department of Mathematics, Utah State University, Logan, Utah, 1989, pp. 289. MR 1188434 |
Reference:
|
[2] I. M. Anderson аnd T. Duchаmp: On the existence of global variational principles.Am. J. Math. 102 (1980), 781-868. MR 0590637, 10.2307/2374195 |
Reference:
|
[3] D. Dedecker аnd W.M. Tulczyjew: Spectгal sequences and the inverse problem of the calculus of variations.Internat. Coll. on Diff. Geom. Methods in Math. Physics, Aix-en-Provence Sept. 1989, in: Lectuгe Notes in Math. vol. 836, Springer, Berlin, 1980. |
Reference:
|
[4] H. Helmholtz: Über die Physikalische Bedeutung des Prinzips der kleinsten Wirkung.J. für die reine u. angewandte Math. 100 (1987), 137-166. |
Reference:
|
[5] L. Klаpkа: Euler-Lagrange expressions and closed two-foгms in higher order mechanics.in: Geometrical Methods in Physics, Pгoc. Conf. on Diff. Geom. and its Appl., Nové Mӗsto na Moravӗ, Czechoslovakia, 1983 (D. Ҟrupka, ed.), J.E. Purkynӗ Univ., Brno, Czechoslovakia, 1984, pp. 149-153. MR 0793205 |
Reference:
|
[6] D. Krupkа: Some geometric aspects of variational problems in fìbeгed manifolds.Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65. |
Reference:
|
[7] D. Krupkа: On the local structure of the Euler-Lagrange mapping of the calculus of variations.in: Proc. Conf. on Diff. Geom. and Its Appl. 1980 (O. Kowalski, ed.), Universita Karlova, Prague, 1981, pp. 181-188. MR 0663224 |
Reference:
|
[8] D. Krupkа: Lepagean forms in higher order variational theory.in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Pгoc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197-238. MR 0773488 |
Reference:
|
[9] D. Krupkа: Geometry of lagrangean structuгes 2..Arch. Math. (Bгno) 22 (1986), 211-228. MR 0868536 |
Reference:
|
[10] D. Krupkа: Geometry of lagrangean structures 3..Proc. Winter School of Abstгact Analysis, Sгní, Czechoslovakia, 1986, Suppl. ai Rend. del Circ. Mat. di Palermo, vol. 14, 1987, pp. 187-224. MR 0920855 |
Reference:
|
[11] D. Krupka: Variational sequences on fìnite order jet spaces.in: Diffeгential Geometry and Its Applications, Proc. Conf., Brno, Czechoslovakia, 1989 (J. Janyška and D. Krupka, eds.), Woгld Scientific, Singapore, 1990, pp. 236-254. MR 1062026 |
Reference:
|
[12] O. Krupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity.Arch. Math. (Brno) 22 (1986), 97-120. MR 0868124 |
Reference:
|
[13] R. Macjuk: On the existence of a lagrangian for a system of ordinary diffeгential equations.Mat. metody fiz.-mech. polja 13 (1981), 30-34. (In Russian.) |
Reference:
|
[14] A. Mayer: Die Бxistenzbedingungen eines kinetischen Potentiales.Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896), 519-529. |
Reference:
|
[15] Ғ. Takens: A global version of the inverse pгoblem of the całculus of variations.J. Diff. Geom. 14 (1979), 543-562. MR 0600611, 10.4310/jdg/1214435235 |
Reference:
|
[16] E. Tonti: Variational formulation of nonlinear differential equatюns I, II.Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969), 137-165, 262-278. |
Reference:
|
[17] W M. Tulczyjew: Sur la différentielle de Lagrange.C. R. Acad. Sci. Paгis A 280 (1975), 1295-1298. Zbl 0314.58018, MR 0377987 |
Reference:
|
[18] M. M. Veiberg: Variational Methods in the Theory of Non-Linear Operators.GITL, Moscow, 1959. (In Russian.) |
Reference:
|
[19] A. L. Vanderbauwhede: Potential operators and variational principles.Hadronic J. 2 (1979), 620-641. Zbl 0431.47032, MR 0537234 |
Reference:
|
[20] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory.Soviet Math. Dokl. 19 (1978), 144-148. |
Reference:
|
[21] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, II. The nonlinear theory.J. Math. Anal. Appl. 100 (1984), 1-40, 41-129. MR 0739951, 10.1016/0022-247X(84)90071-4 |
. |