Previous |  Up |  Next

Article

Title: Natural transformations of the covelocities functors into some natural bundles (English)
Author: Mikulski, W. M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 3
Year: 1993
Pages: 277-280
Summary lang: English
.
Category: math
.
Summary: In this paper are determined all natural transformations of the natural bundle of $(g,r)$-covelocities over $n$-manifolds into such a linear natural bundle over $n$-manifolds which is dual to the restriction of a linear bundle functor, if $n\geq q$. (English)
Keyword: covelocities functors
Keyword: natural transformations
Keyword: natural bundle
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0786.58001
idMR: MR1239122
DOI: 10.21136/MB.1993.125923
.
Date available: 2009-09-24T21:00:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125923
.
Reference: [1] J. Boman: Differentiability of functions and of its compositions with functions of one variable.Math. Scand. 20 (1967), 249-268. MR 0237728, 10.7146/math.scand.a-10835
Reference: [2] T. Klein: Connections on higher order tangent bundles.Čas. Pěst. Mat. 106 (1981), 414-421. Zbl 0497.58003, MR 0637822
Reference: [3] I. Kolář, J. Slovák: On the geometric functors on manifolds.Proceedings of the Winter School on Geometry and Physics, Srní 1988, Suppl. Rendiconti Circolo Mat. Palermo, Serie II 21, 1989, pp. 223-233. MR 1009575
Reference: [4] J. Kurek: Natural transformations of higher order covelocities functor.Annales UMCS to appear. Zbl 0778.53016, MR 1322141
Reference: [5] A. Nijenhuis: Natural bundles and their general properties.Differential Geometry in Honor of K. Yano, Kinokuniya, Tokio, 1972, pp. 317-343. Zbl 0246.53018, MR 0380862
.

Files

Files Size Format View
MathBohem_118-1993-3_6.pdf 517.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo