Previous |  Up |  Next

Article

Title: On almost quasicontinuous functions (English)
Author: Borsík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 3
Year: 1993
Pages: 241-248
Summary lang: English
.
Category: math
.
Summary: A function $f:X\rightarrow Y$ is said to be almost quasicontinuous at $x\in X$ if $x\in C\left| Int C\right|f^{-1}(V)$ for each neighbourhood $V$ of $f(x)$. Some properties of these functions are investigated. (English)
Keyword: separate almost continuity
Keyword: almost quasicontinuous functions
Keyword: almost quasicontinuity
Keyword: $\beta$-continuity
Keyword: separate almost quasicontinuity
MSC: 54C08
MSC: 54C10
MSC: 54D99
idZBL: Zbl 0835.54011
idMR: MR1239118
DOI: 10.21136/MB.1993.125933
.
Date available: 2009-09-24T20:59:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125933
.
Reference: [1] M. E. Abd El-Monsef S. N. El-Deeb R. A. Mahmoud: $\beta$-open sets and $\beta$-continuous mappings.Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90. MR 0828081
Reference: [2] D. Andrijevic: Semi-preopen sets.Mat. Vesnik 38 (1986), 24-32. Zbl 0604.54002
Reference: [3] J. Borsík J. Doboš: On decomposition of quasicontinuity.Real Anal. Exchange 16 (1990-91), 292-305. MR 1087494, 10.2307/44153699
Reference: [4] A. M. Bruckner: Differentiation of real functions.Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl 0382.26002, MR 0507448
Reference: [5] Z. Frolík: Remarks concerning the invariance of Baire spaces under mappings.Czechoslovak Math. J. 11 (1961), 381-385. MR 0133098
Reference: [6] K. R. Gentry H. B. Hoyle: Somewhat continuous functions.Czechoslovak Math. J. 21 (1971), 5-12. MR 0278269
Reference: [7] T. Husain: Almost continuous mappings.Comment. Math 10 (1966), 1-7. Zbl 0138.17601, MR 0220256
Reference: [8] N. Levine: Semi-open sets and semi-continuity in topological spaces.Amer. Math. Monthly 70 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.1080/00029890.1963.11990039
Reference: [9] S. Marcus: Sur les fonctions quasicontinues au sens de S. Kempisty.Colloq. Math. 8 (1961), 47-53. Zbl 0099.04501, MR 0125915, 10.4064/cm-8-1-47-53
Reference: [10] A. S. Mashour M. E. Abd Ei-Monsef S. N. El-Deeb: On precontinuous and weak precontinuous mappings.Pгoc. Math. Phys. Soc. Egypt 53 (1982), 47-53. MR 0830896
Reference: [11] O. Náther T. Neubrunn: On characterization of quasicontinuous multifunctions.Časopis Pěst. mat. 107 (1982), 294-300. MR 0673055
Reference: [12] T. Neubrunn: A generalized continuity and product spaces.Math. Slovaca 26 (1976), 97-99. Zbl 0318.54008, MR 0436064
Reference: [13] T. Neubrunn: Generalized continuity and separate continuity.Math. Slovaca 27 (1977), 307-314. Zbl 0371.54022, MR 0536149
Reference: [14] A. Neubrunnová: On certain generalizations of the notion of continuity.Mat. časopis 23 (1973), 374-380. MR 0339051
Reference: [15] A. Neubrunnová T. Šalát: On almost quasicontinuity.Math. Bohemica 117 (1992), 197-205. MR 1165897
Reference: [16] T. Noiri V. Popa: Weak forms of faint continuity.Bull. Math. Soc. Sci. Math. Roumanie З4 (1990), 263-270. MR 1087163
Reference: [17] J. C. Oxtoby: Cartesian product of Baire spaces.Fund. Math. 49 (1961), 156-170. MR 0140638
Reference: [18] Z. Piotrowski: A survey of results concerning generalized continuity in topological spaces.Acta Math. Univ. Comenian. 52-53 (1987), 91-110. MR 0989626
.

Files

Files Size Format View
MathBohem_118-1993-3_2.pdf 1.224Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo