Previous |  Up |  Next

Article

Title: Symmetrized and continuous generalization of transversals (English)
Author: Kochol, Martin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 1
Year: 1996
Pages: 95-106
Summary lang: English
.
Category: math
.
Summary: The theorem of Edmonds and Fulkerson states that the partial transversals of a finite family of sets form a matroid. The aim of this paper is to present a symmetrized and continuous generalization of this theorem. (English)
Keyword: transversal
Keyword: polymatroid
Keyword: system of representatives
MSC: 05B35
MSC: 05D15
MSC: 52B40
MSC: 90C35
idZBL: Zbl 0863.05078
idMR: MR1388181
DOI: 10.21136/MB.1996.125937
.
Date available: 2009-09-24T21:16:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125937
.
Reference: [1] M. Aigner: Combinatorial Theory.Springer, Berlin, 1979. Zbl 0415.05001, MR 0542445
Reference: [2] R. A. Brualdi: Common transversals and strong exchange systems.J. Combin. Theory Ser. B 3 (1970), 307-329. Zbl 0194.00802, MR 0256887
Reference: [3] J. Edmonds: Submodular functions, matroids and certain polyhedra.Combinatorial structures and their applications (R. Guy, H. Hanani, N. Sauer, J. Schonheim, eds.). Gordon and Breach, New York, 1970, pp. 69-87. Zbl 0268.05019, MR 0270945
Reference: [4] J. Edmonds D. R. Fulkerson: Transversals and matroid partitions.J. Res. Nat. Bur. Standards Sect. B 69 (1965), 147-153. MR 0188090
Reference: [5] M. Grötschel L. Lovász A. Schrijver: Geometric Algorithms and Combinatorial Optimization.Springer, Berlin, 1988. MR 0936633
Reference: [6] P. Hall: On representatives of subsets.J. London Math. Soc. 10 (1935), 26-30. Zbl 0010.34503, 10.1112/jlms/s1-10.37.26
Reference: [7] P. Horák: Transversals and matroids.Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.). Physica-Verlag, Heidelberg, 1990, pp. 381-389. MR 1100058
Reference: [8] M. Kochol: The notion and basic properties of M-transversals.Discrete Math. 104 (1991), 191-196. MR 1172847, 10.1016/0012-365X(92)90333-B
Reference: [9] M. Kochol: About a generalization of transversals.Math. Bohem. 119 (1994), 143-149. Zbl 0806.05064, MR 1293247
Reference: [10] M. Kochol: Some generalizations of transversal theory.CSc. thesis, Bratislava, 1990. (In Slovak.)
Reference: [11] E. L. Lawler C. U. Martel: Computing maximal "polymatroidal" network flows.Math. Oper. Research 7 (1982), 334-347. MR 0667926, 10.1287/moor.7.3.334
Reference: [12] C. J. H. McDiarmid: Rado's theorem for polymatroids.Proc. Cambridge Phil. Soc. 18 (1975), 263-281. Zbl 0321.05028, MR 0379247
Reference: [13] L. Mirsky: Transversal Theory.Academic Press, London, 1971. Zbl 0282.05001, MR 0282853
Reference: [14] L. Mirsky H. Perfect: Applications of the notion of independence to combinatorial analysis.J. Combin. Theory 2 (1967), 327-357. MR 0225675, 10.1016/S0021-9800(67)80034-6
Reference: [15] H. Perfect: Independence spaces and combinatorial problems.Proc. London Math. Soc. 19 (1969), 17-30. Zbl 0176.28302, MR 0241309, 10.1112/plms/s3-19.1.17
Reference: [16] S. Poljak: .Personal communication. Zbl 1167.05028
Reference: [17] R. Rado: A theorem on independence relations.Quart. J. Math. (Oxford) 13 (1942), 83-89. Zbl 0063.06369, MR 0008250, 10.1093/qmath/os-13.1.83
Reference: [18] A. Recski: Matroid Theory and its Applications in Electric Network Theory and in Statics.Springer, Berlin, 1989. Zbl 0729.05012, MR 1027839
Reference: [19] A. Schrijver: Total dual integrality from directed graphs, crossing families, and sub- and supermodular functions.Progress in Combinatorial Optimization (W. R. Pulleyblank, ed.). Academic Press, Toronto, 1984, pp. 315-362. Zbl 0542.90068, MR 0771885
Reference: [20] D. J. A. Welsh: Matroid Theory.Academic Press, London, 1976. Zbl 0343.05002, MR 0427112
Reference: [21] D. R. Woodall: Vector transversals.J. Combin. Theory Ser. B 32 (1982), 189-205. Zbl 0467.05024, MR 0657688, 10.1016/0095-8956(82)90035-1
.

Files

Files Size Format View
MathBohem_121-1996-1_14.pdf 670.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo