Title:
|
The best Diophantine approximation functions by continued fractions (English) |
Author:
|
Tong, Jingcheng |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
121 |
Issue:
|
1 |
Year:
|
1996 |
Pages:
|
89-94 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\xi=[a_0;a_1,a_2,\dots,a_i,\dots]$ be an irrational number in simple continued fraction expansion, $p_i/q_i=[a_0;a_1,a_2,\dots,a_i]$, $M_i=q_i^2 |\xi-p_i/q_i|$. In this note we find a function $G(R,r)$ such that
\align&M_{n+1}<R\text{ and }M_{n-1}<r\text{ imply }M_n>G(R,r),
&M_{n+1}>R\text{ and }M_{n-1}>r\text{ imply }M_n<G(R,r). \endalign
Together with a result the author obtained, this shows that to find two best approximation functions $\tilde H(R,r)$ and $\tilde L(R,r)$ is a well-posed problem. This problem has not been solved yet. (English) |
Keyword:
|
best diophantine approximation |
Keyword:
|
continued fraction |
Keyword:
|
diophantine approximation |
MSC:
|
11A55 |
MSC:
|
11J04 |
MSC:
|
11J70 |
idZBL:
|
Zbl 0863.11042 |
idMR:
|
MR1388180 |
DOI:
|
10.21136/MB.1996.125943 |
. |
Date available:
|
2009-09-24T21:16:07Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125943 |
. |
Reference:
|
[1] F. Bagemihl, J. R. McLaughlin: Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions.J. Reine Angew. Math. 221 (1966), 146-149. Zbl 0135.11104, MR 0183999 |
Reference:
|
[2] E. Borel: Contribution a l'analyse arithmetique du continu.J. Math. Pures Appl. 9 (1903), 329-375. |
Reference:
|
[3] M. Fujiwara: Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen.Tôhoku Math. J. 14 (1918), 109-115. |
Reference:
|
[4] A. Hurwitz: Über die angenäherte Darstellung der irrationalzahlen durch rationale Bruche.Math. Ann. 39 (1891), 279-284. MR 1510702, 10.1007/BF01206656 |
Reference:
|
[5] W. J. LeVeque: On asymmetric approximations.Michigan Math. J. 2 (1953), 1-6. MR 0062784, 10.1307/mmj/1028989860 |
Reference:
|
[6] M. Miller: Über die Approximation reeller Zahlen durch die Näherungsbruche ihres regelmässigen Kettenbruches.Arch. Math. (Basel) 6 (1955), 253-258. MR 0069850, 10.1007/BF01899402 |
Reference:
|
[7] M. B. Nathanson: Approximation by continued fractions.Proc. Amer. Math. Soc. 45 (1974), 323-324. Zbl 0293.10015, MR 0349594, 10.1090/S0002-9939-1974-0349594-X |
Reference:
|
[8] O. Perron: Die Lehre von den Kettenbruchen I, II.3rd ed. Teubner, Leipzig, 1954. MR 0064172 |
Reference:
|
[9] B. Segre: Lattice points in the infinite domains and asymmetric Diophantine approximation.Duke Math. J. 12 (1945), 337-365. MR 0012096 |
Reference:
|
[10] J. Tong: The conjugate property for Diophantine approximation of continued fraction.Proc. Amer. Math. Soc. 105 (1989), 535-539. MR 0937852, 10.1090/S0002-9939-1989-0937852-8 |
Reference:
|
[11] J. Tong: Diophantine approximation of a single irrational number.J. Number Theory 34 (1990), 53-57. Zbl 0714.11036, MR 1054557, 10.1016/0022-314X(90)90102-W |
Reference:
|
[12] J. Tong: Diophantine approximation by continued fractions.J. Austral. Math. Soc. Ser. A 51 (1991), 324-330. Zbl 0739.11026, MR 1124558, 10.1017/S1446788700034273 |
. |