Previous |  Up |  Next

Article

Title: On Rohn's relative sensitivity coefficient of the optimal value for a linear-fractional program (English)
Author: Tigan, Stefan
Author: Stancu-Minasian, I. M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 2
Year: 2000
Pages: 227-234
Summary lang: English
.
Category: math
.
Summary: In this note we consider a linear-fractional programming problem with equality linear constraints. Following Rohn, we define a generalized relative sensitivity coefficient measuring the sensitivity of the optimal value for a linear program and a linear-fractional minimization problem with respect to the perturbations in the problem data. By using an extension of Rohn's result for the linear programming case, we obtain, via Charnes-Cooper variable change, the relative sensitivity coefficient for the linear-fractional problem. This coefficient involves only the measure of data perturbation, the optimal solution for the initial linear-fractional problem and the optimal solution of the dual problem of linear programming equivalent to the initial fractional problem. (English)
Keyword: linear-fractional programming
Keyword: generalized relative sensitivity coefficient
MSC: 90C05
MSC: 90C31
MSC: 90C32
idZBL: Zbl 1030.90125
idMR: MR1768810
DOI: 10.21136/MB.2000.125953
.
Date available: 2009-09-24T21:42:46Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125953
.
Reference: [1] A. Charnes W. W. Cooper: Programming with linear fractional programming.Naval Res. Logist. Quart. 9 (1962), 3-4, 181-186. MR 0152370
Reference: [2] H. D. Mills: Marginal values of matrix: games and linear programs.Linear inequalities and related systems (H.W.Kuhn, A.W.Tucker, eds.). Princeton University Press, Princeton, 1956, pp. 183-193. Zbl 0072.37702, MR 0081803
Reference: [3] L. Podkaminer: The dual price and other parameters in the fractional programming problem.Przeglad Statyst. 18 (1971), 3-4, 333-338. (In Polish.) MR 0299223
Reference: [4] A. Prékopa: On the probability distribution of the optimum of a random linear program.J. SIAM Control 4 (1966), 1, 211-222. MR 0191638, 10.1137/0304020
Reference: [5] J. Rohn: On sensitivity of the optimal value of a linear program.Ekonom. -Mat. Obzor 25 (1989), 1, 105-107. Zbl 0663.90089, MR 0996949
Reference: [6] J. K. Sengupta, K. A. Fox: Economic Analysis and Operations Research: Optimization Techniques in Quantitative Economic Models.Studies in Mathematical and Managerial Economics, vol. 10, North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1969. MR 0270726
Reference: [7] I. M. Stancu-Minasian: Fractional Programming: Theory, Methods and Applications.Kluwer Academic Publishers, Dordrecht, 1997. Zbl 0899.90155, MR 1472981
Reference: [8] I. M. Stancu-Minasian: Stochastic Programming with Multiple Objective Functions.Editura Academiei Române, Bucuresti and D. Reidel Publishing Company, Dordrecht, Boston, Laucester, 1984. Zbl 0554.90069, MR 0459619
Reference: [9] A. C. Williams: Marginal values in linear programming.Journal of Society of Industrial and Applied Mathematics 11 (1963), 1, 82-94. Zbl 0115.38102, MR 0184725, 10.1137/0111006
.

Files

Files Size Format View
MathBohem_125-2000-2_11.pdf 1.342Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo