Previous |  Up |  Next

Article

Title: On the rate of strong summability of double Fourier series (English)
Author: Łenski, Włodzimierz
Author: Topolewska, Maria
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 4
Year: 1998
Pages: 337-363
Summary lang: English
.
Category: math
.
Summary: Estimates of the strong means of Marcinkiewicz type with the Cesaro means of negative order in one of the variables instead of square partial sums are obtained by characteristics constructed on the basis of moduli of continuity. (English)
Keyword: double Fourier series
Keyword: strong approximation
Keyword: strong means of Marcinkiewicz type
Keyword: Cesàro means
MSC: 40F05
MSC: 40G05
MSC: 41A17
MSC: 42A10
MSC: 42B08
idZBL: Zbl 0936.42007
idMR: MR1667108
DOI: 10.21136/MB.1998.125967
.
Date available: 2009-09-24T21:33:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125967
.
Reference: [1] E. F. Beckenbach R. Bellman: Inequalities.Springer-Verlag, Berlin-Heidelberg-New York, 1965. MR 0192009
Reference: [2] Ju. A. Brudnyj I. J. Gopijengauz: On a theorem of Hardy and Littlewood.Mat. Sb. 52 (1960), 891-894. MR 0120376
Reference: [3] W. Łenski: On the norm-strong approximation of $2 \pi$-periodic functions.Demonstratio Math. 11 (1978), 285-299. MR 0507287
Reference: [4] W. Łenski: On the strong approximation of functions belonging to the space $L^q$ $(1 \leg q \leg \infty)$.Funct. Approx. Comment. Math. 6 (1978), 153-166. Zbl 0385.42002, MR 0548366
Reference: [5] W. Łenski: Strong approximation of double Fourier series.Funct. Approx. Comment. Math. 4 (1976), 71-83. MR 0442594
Reference: [6] D. S. Mitrinowič: Analytic Inequalities.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0274686
Reference: [7] A. Zygmund: Trigonometric series I.Cambridge, 1959.
Reference: [8] A. Zygmund: Trigonometric series II.Cambridge, 1959.
Reference: [9] L. V. Zhizhiashvili: Conjugate Functions and Trigonometric series.Tbilisi, 1969. MR 0261275
.

Files

Files Size Format View
MathBohem_123-1998-4_1.pdf 2.907Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo