Previous |  Up |  Next

Article

Title: Digraphs contractible onto $\sp *K\sb 3$ (English)
Author: Janaqi, Stefan
Author: Lescure, F.
Author: Maamoun, M.
Author: Meyniel, H.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 4
Year: 1998
Pages: 365-369
Summary lang: English
.
Category: math
.
Summary: We show that any digraph on $n\ge3$ vertices and with not less than $3n-3$ arcs is contractible onto ${}^*\!K_3$. (English)
Keyword: digraph
Keyword: minor
Keyword: contraction
MSC: 05C20
idZBL: Zbl 0934.05069
idMR: MR1667109
DOI: 10.21136/MB.1998.125971
.
Date available: 2009-09-24T21:33:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125971
.
Reference: [1] Bollobas B., Catlin P. A., Erdös P.: Hadwiger's conjecture is true for almost every graph.European J. Combin. 1 (1980), 195-199. Zbl 0457.05041, MR 0593989, 10.1016/S0195-6698(80)80001-1
Reference: [2] Dirac G. A.: A property of 4-chromatic graphs and some remarks on critical graphs.J. London Math. Soc. 27 (1952), 85-92. Zbl 0046.41001, MR 0045371, 10.1112/jlms/s1-27.1.85
Reference: [3] Duchet P., Kaneti V.: Sur la contractibilité d'un graphe orienté en $*K_4$.Discrete Math. 130 (1994), 57-68. MR 1284749
Reference: [4] Hadwiger H.: Über eine Klassifikation der Streckenkcomplexe.Vierteljschr. Naturforsch. Ges. Zürich 88 (1943), 133-142. MR 0012237
Reference: [5] Jacob H., Meyniel H.: Extensions of Turan's and Brooks theorem and new notions of stability and colouring in digraphs.Ann. Discrete Math. 17 (1983), 365-370.
Reference: [6] Jagger C.: An extremal function for digraph subcontraction.J. Graph. Theory 21 (1996), 343-350. Zbl 0844.05046, MR 1374908, 10.1002/(SICI)1097-0118(199603)21:3<343::AID-JGT10>3.0.CO;2-I
Reference: [7] Kostochka A. V.: Lower bound on the Hadwiger number of graph by their average degree.Combinatorica 4 (1984), 307-316. MR 0779891, 10.1007/BF02579141
Reference: [8] Meyniel H.: Contractibilité de graphes orienté on $*K_3$.Private communication.
Reference: [9] Robertson N., Seymour P., Thomas R.: Hadviger's conjecture for $K_6$-free graphs.Combinatorica 13 (1993), 279-361. MR 1238823, 10.1007/BF01202354
Reference: [10] Thomason A.: An extremal function for contractions of graphs.Math. Proc. Combridge Philos. Soc. 95 (1984), 261-265. Zbl 0551.05047, MR 0735367, 10.1017/S0305004100061521
Reference: [11] Wagner K.: Bemerkungen zu Hadwigers Vermutung.Math. Ann. 141 (1960), 433-451. Zbl 0096.17904, MR 0121309, 10.1007/BF01360256
.

Files

Files Size Format View
MathBohem_123-1998-4_2.pdf 356.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo