Previous |  Up |  Next

Article

Title: Generalized boundary value problems with linear growth (English)
Author: Šeda, Valter
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 4
Year: 1998
Pages: 385-404
Summary lang: English
.
Category: math
.
Summary: It is shown that for a given system of linearly independent linear continuous functionals $l_i C^{n-1} \to\bb R$, $i=1,\dots,n$, the set of all $n$-th order linear differential equations such that the Green function for the corresponding generalized boundary value problem (BVP for short) exists is open and dense in the space of all $n$-th order linear differential equations. Then the generic properties of the set of all solutions to nonlinear BVP-s are investigated in the case when the nonlinearity in the differential equation has a linear majorant. A periodic BVP is also studied. (English)
Keyword: generic properties
Keyword: periodic boundary value problem
MSC: 34B15
MSC: 34B27
MSC: 34C11
MSC: 34C25
idZBL: Zbl 0937.34019
idMR: MR1667111
DOI: 10.21136/MB.1998.125969
.
Date available: 2009-09-24T21:33:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125969
.
Reference: [1] S. R. Bernfeld V. Lаkshmikаnthаm: An Introduction to Nonlinear Boundary Value Problems.Academic Press, Inc, New York, 1974. MR 0445048
Reference: [2] S. H. Ding J. Mаwhin: A multiplicity result for periodic solutions of higher order ordinary differential equations.Differential Integral Equations 1 (1988), 31-39. MR 0920487
Reference: [3] J.-P. Gossez P. Omаri: Periodic solutions of a second order ordinary differential equation: A necessary and suffîcient condition for nonresonance.J. Differential Equations 94 (1991), 67-82. MR 1133541, 10.1016/0022-0396(91)90103-G
Reference: [4] Ch. P. Guptа: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277-281. MR 1290657, 10.1006/jmaa.1994.1299
Reference: [5] Ph. Hаrtmаn: Ordinary Differential Equations.Wiley-Interscience, New York, 1969. MR 0419901
Reference: [6] L. V. Kаntorovich G. P. Akilov: Functional Analysis.Nauka, Moscow, 1977. (In Russian.) MR 0511615
Reference: [7] J. Mаwhin: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conf. Ser. in Math. 40, American Math. Soc, Providence, 1979. MR 0525202, 10.1090/cbms/040
Reference: [8] F. Neumаn: Global Properties of Linear Ordinary Differential Equations.Academia, Praha, 1991. MR 1192133
Reference: [9] Ľ. Pindа: A remark on the existence of small solutions to a fourth order boundary value problem with large nonlinearity.Math. Slovaca 4З (1993), 149-170. MR 1274599
Reference: [10] Ľ. Pindа: On a fourth order periodic boundary value problem.Arch. Math. (Brno) 30 (1994), 1-8.
Reference: [11] Ľ. Pinda: Landesman-Lazer type problems at an eigenvalue of odd multiplicity.Arch. Math. (Brno) 30 (1994), 73-84. Zbl 0819.34020, MR 1292560
Reference: [12] N. Rouche J. Mawhin: Équations différentielles ordinaires, T. 2: Stabilité et solutions périodiques.Masson et Cie, Paris, 1973. MR 0481181
Reference: [13] W. Rudin: Functional Analysis.Mc. Graw-Hill Book Co., New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [14] B. Rudolf: The generalized boundary value problem is a Fredholm mapping of index zero.Arch. Math. (Brno) 31 (1995), 55-58. Zbl 0830.34013, MR 1342375
Reference: [15] B. Rudolf: A multiplicity result for a periodic boundary value problem.(Preprint). Zbl 0859.34016, MR 1416037
Reference: [16] V. Šeda: On the three-point boundary-value problem for a nonlinear third order ordinary differential equation.Arch. Math. 2, Scripta Fac. Sci., Nat. UJEP Brunensis 8 (1972), 85-98. MR 0322257
Reference: [17] V. Šeda: Some remarks to coincidence theory.Czechoslovak Math. J. 38 (1988), 554-572. MR 0950308
Reference: [18] V. Šeda: Quasilinear and approximate quasilinear method for generalized boundary value problems.WSSIA 1 (1992), 507-529. MR 1180135
Reference: [19] V. Šeda J. J. Nieto M. Gera: Periodic boundary value problems for nonlinear higher order ordinary differential equations.Appl. Math. Comp. 48 (1992), 71-82. MR 1147728, 10.1016/0096-3003(92)90019-W
Reference: [20] V. Šeda: Fredholm mappings and the generalized boundary value problem.Differential Integral Equations 8 (1995), 19-40. MR 1296108
.

Files

Files Size Format View
MathBohem_123-1998-4_4.pdf 1.121Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo