Title:
|
Generalized boundary value problems with linear growth (English) |
Author:
|
Šeda, Valter |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
123 |
Issue:
|
4 |
Year:
|
1998 |
Pages:
|
385-404 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is shown that for a given system of linearly independent linear continuous functionals $l_i C^{n-1} \to\bb R$, $i=1,\dots,n$, the set of all $n$-th order linear differential equations such that the Green function for the corresponding generalized boundary value problem (BVP for short) exists is open and dense in the space of all $n$-th order linear differential equations. Then the generic properties of the set of all solutions to nonlinear BVP-s are investigated in the case when the nonlinearity in the differential equation has a linear majorant. A periodic BVP is also studied. (English) |
Keyword:
|
generic properties |
Keyword:
|
periodic boundary value problem |
MSC:
|
34B15 |
MSC:
|
34B27 |
MSC:
|
34C11 |
MSC:
|
34C25 |
idZBL:
|
Zbl 0937.34019 |
idMR:
|
MR1667111 |
DOI:
|
10.21136/MB.1998.125969 |
. |
Date available:
|
2009-09-24T21:33:27Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125969 |
. |
Reference:
|
[1] S. R. Bernfeld V. Lаkshmikаnthаm: An Introduction to Nonlinear Boundary Value Problems.Academic Press, Inc, New York, 1974. MR 0445048 |
Reference:
|
[2] S. H. Ding J. Mаwhin: A multiplicity result for periodic solutions of higher order ordinary differential equations.Differential Integral Equations 1 (1988), 31-39. MR 0920487 |
Reference:
|
[3] J.-P. Gossez P. Omаri: Periodic solutions of a second order ordinary differential equation: A necessary and suffîcient condition for nonresonance.J. Differential Equations 94 (1991), 67-82. MR 1133541, 10.1016/0022-0396(91)90103-G |
Reference:
|
[4] Ch. P. Guptа: A note on a second order three-point boundary value problem.J. Math. Anal. Appl. 186 (1994), 277-281. MR 1290657, 10.1006/jmaa.1994.1299 |
Reference:
|
[5] Ph. Hаrtmаn: Ordinary Differential Equations.Wiley-Interscience, New York, 1969. MR 0419901 |
Reference:
|
[6] L. V. Kаntorovich G. P. Akilov: Functional Analysis.Nauka, Moscow, 1977. (In Russian.) MR 0511615 |
Reference:
|
[7] J. Mаwhin: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conf. Ser. in Math. 40, American Math. Soc, Providence, 1979. MR 0525202, 10.1090/cbms/040 |
Reference:
|
[8] F. Neumаn: Global Properties of Linear Ordinary Differential Equations.Academia, Praha, 1991. MR 1192133 |
Reference:
|
[9] Ľ. Pindа: A remark on the existence of small solutions to a fourth order boundary value problem with large nonlinearity.Math. Slovaca 4З (1993), 149-170. MR 1274599 |
Reference:
|
[10] Ľ. Pindа: On a fourth order periodic boundary value problem.Arch. Math. (Brno) 30 (1994), 1-8. |
Reference:
|
[11] Ľ. Pinda: Landesman-Lazer type problems at an eigenvalue of odd multiplicity.Arch. Math. (Brno) 30 (1994), 73-84. Zbl 0819.34020, MR 1292560 |
Reference:
|
[12] N. Rouche J. Mawhin: Équations différentielles ordinaires, T. 2: Stabilité et solutions périodiques.Masson et Cie, Paris, 1973. MR 0481181 |
Reference:
|
[13] W. Rudin: Functional Analysis.Mc. Graw-Hill Book Co., New York, 1973. Zbl 0253.46001, MR 0365062 |
Reference:
|
[14] B. Rudolf: The generalized boundary value problem is a Fredholm mapping of index zero.Arch. Math. (Brno) 31 (1995), 55-58. Zbl 0830.34013, MR 1342375 |
Reference:
|
[15] B. Rudolf: A multiplicity result for a periodic boundary value problem.(Preprint). Zbl 0859.34016, MR 1416037 |
Reference:
|
[16] V. Šeda: On the three-point boundary-value problem for a nonlinear third order ordinary differential equation.Arch. Math. 2, Scripta Fac. Sci., Nat. UJEP Brunensis 8 (1972), 85-98. MR 0322257 |
Reference:
|
[17] V. Šeda: Some remarks to coincidence theory.Czechoslovak Math. J. 38 (1988), 554-572. MR 0950308 |
Reference:
|
[18] V. Šeda: Quasilinear and approximate quasilinear method for generalized boundary value problems.WSSIA 1 (1992), 507-529. MR 1180135 |
Reference:
|
[19] V. Šeda J. J. Nieto M. Gera: Periodic boundary value problems for nonlinear higher order ordinary differential equations.Appl. Math. Comp. 48 (1992), 71-82. MR 1147728, 10.1016/0096-3003(92)90019-W |
Reference:
|
[20] V. Šeda: Fredholm mappings and the generalized boundary value problem.Differential Integral Equations 8 (1995), 19-40. MR 1296108 |
. |