Previous |  Up |  Next

Article

Title: Topologically maximal convergences, accessibility, and covering maps (English)
Author: Dolecki, Szymon
Author: Pillot, Michel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 4
Year: 1998
Pages: 371-384
Summary lang: English
.
Category: math
.
Summary: Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations of sequence-covering and compact-covering maps are used to refine various results on the relationship between covering and quotient maps (by A. V. Arhangeľskii, E. Michael, F. Siwies and V. J. Mancuso) by deducing them from a single theorem. (English)
Keyword: sequence-covering
Keyword: compact-covering
Keyword: strong accessibility
Keyword: pseudotopology
Keyword: paratopology
Keyword: pretopology
Keyword: accessibility
MSC: 54A20
MSC: 54D50
MSC: 54D55
idZBL: Zbl 0933.54004
idMR: MR1667110
DOI: 10.21136/MB.1998.125968
.
Date available: 2009-09-24T21:33:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125968
.
Reference: [1] A. V. Arhangeľskii: Some types of factor mappings and the relations between classes of topological spaces.Dokl. Akad. Nauk SSSR 153 (1963), 743-763. MR 0158362
Reference: [2] A. V. Arhangeľskii: On quotient mappings defined on metric spaces.Soviet Math. Dokl. 5 (1964), 368-371.
Reference: [3] G. Choquet: Convergences.Ann. Univ. Grenoble 23 (1947-48), 55-112. MR 0025716
Reference: [4] S. Dolecki: Convergence-theoretic methods in quotient quest.Topology Appl. 73 (1996). 1-21. MR 1413721, 10.1016/0166-8641(96)00067-3
Reference: [5] S. Dolecki G. H. Greco: Topologically maximal pretopologies.Studia Math. 77 (1984), 265-281. MR 0745283, 10.4064/sm-77-3-265-281
Reference: [6] S. Dolecki G. H. Greco: Cyrtologies of convergences, II: Sequential convergences.Math. Nachr. 127 (1986), 317-334. MR 0861735, 10.1002/mana.19861270123
Reference: [7] R. Engelking: Topology.PWN, 1977. Zbl 0373.54002
Reference: [8] S. Franklin: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107-115. Zbl 0132.17802, MR 0180954, 10.4064/fm-57-1-107-115
Reference: [9] S. Franklin: Spaces in which sequences suffice, II.Fund. Math. 61 (1967), 51-56. Zbl 0168.43502, MR 0222832, 10.4064/fm-61-1-51-56
Reference: [10] W. Gähler: Grundstrukturen der Analysis.Akademie-Verlag, 1977. MR 0459969
Reference: [11] O. Hájek: Notes on quotient maps.Comment. Math. Univ. Carolin. 7(1966), 319-323. MR 0202118
Reference: [12] V. Kannan: Ordinal invariants in topology.Memoirs Amer. Math. Soc. 32 (1981), no. 245, 1-164. Zbl 0473.54001, MR 0617500, 10.1090/memo/0245
Reference: [13] D. C. Kent: Convergence quotient maps.Fund. Math. 65 (1969), 197-205. Zbl 0179.51002, MR 0250258, 10.4064/fm-65-2-197-205
Reference: [14] E. Michael: Bi-quotient maps and cartesian products of quotient maps.Ann. Inst. Fourier (Grenoble) 18 (1968), 287-302. Zbl 0175.19704, MR 0244964, 10.5802/aif.301
Reference: [15] E. Michael: $N_0$-spaces.J. Math. Mech. 15 (1966), 983-1002. MR 0206907
Reference: [16] E. Michael: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [17] F. Siwiec: Sequence-covering and countably bi-quotient mappings.Gen. Topology Appl. 1 (1971), 143-154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [18] F. Siwiec V. J. Mancuso: Relations among certain mappings and conditions for their equivalence.Gen. Topology Appl. 1 (1971), 34-41. MR 0282347
Reference: [19] G. T. Whyburn: Mappings on inverse sets.Duke Math. J. 23 (1956), 237-240. Zbl 0071.38201, MR 0098361, 10.1215/S0012-7094-56-02321-3
Reference: [20] G. T Whyburn: Accessibility spaces.Proc. Amer. Math. Soc. 24 (1970), 181-185. Zbl 0197.48602, MR 0248722, 10.1090/S0002-9939-1970-0248722-0
.

Files

Files Size Format View
MathBohem_123-1998-4_3.pdf 903.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo