Previous |  Up |  Next

Article

Keywords:
direct product of lattices; algebraic lattice; strictly irreducible element; conditional completeness; strictly join-irreducible elements
Summary:
In this paper we generalize a result of Libkin concerning direct product decompositions of lattices.
References:
[1] G. Grätzer: General Lattice Theory. Birkhäuser Verlag, Basel, 1978. MR 0504338
[2] J. Hashimoto: On direct product decompositions of partially ordered sets. Ann. of Math. 54 (1951), 315-318. DOI 10.2307/1969532 | MR 0043067
[3] J. Jakubík: Weak product decompositions of discrete lattices. Czechoslovak Math. J. 21 (1971), 399-412. MR 0286723
[4] J. Jakubík: Weak product decompositions of partially ordered sets. Colloq. Math. 25 (1972), 177-190. MR 0329977
[5] L. Libkin: Direct decompositions of atomistic algebraic lattices. Algebra Universalis 33 (1995), 127-135. DOI 10.1007/BF01190769 | MR 1303635 | Zbl 0818.06004
[6] G. Richter: On the structure of lattices in which every element is a join of join-irreducible elements. Period. Math. Hungar. 13 (1982), 47-69. DOI 10.1007/BF01848096 | MR 0652890 | Zbl 0484.06008
Partner of
EuDML logo