Previous |  Up |  Next

Article

Title: Pairwise fuzzy irresolute mappings (English)
Author: Thakur, S. S.
Author: Malviya, R.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 3
Year: 1996
Pages: 273-280
Summary lang: English
.
Category: math
.
Summary: In this paper the concepts of fuzzy irresolute and fuzzy presemiopen mappings due to Yalvac [12] are generalized to fuzzy bitopological spaces and their basic properties and characterizations are studied. (English)
Keyword: fuzzy bitopological spaces
Keyword: $(i, j)$-fuzzy semiopen
Keyword: $(i, j)$-fuzzy semiclosed
Keyword: $(i,j)$-semineighbourhood
Keyword: $(i,j)$-semi-$Q$-neighbourhood
MSC: 04A72
MSC: 54A40
idZBL: Zbl 0879.54006
idMR: MR1419881
DOI: 10.21136/MB.1996.125992
.
Date available: 2009-09-24T21:19:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125992
.
Reference: [1] K. K. Azad: On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity.J. Math. Anal. Appl. 82 (1981), 14-32. MR 0626738, 10.1016/0022-247X(81)90222-5
Reference: [2] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [3] M. H. Ghanim E. E. Kerre, A. S. Mashhour: Separation axiom, subspaces and sums in fuzzy topology.J. Math. Anal. Appl. 102 (1984), 189-202. MR 0751352, 10.1016/0022-247X(84)90212-9
Reference: [4] A. Kandil: Biproximities and fuzzy bitopological spaces.Simon Stevin 63 (1989), 45-66. Zbl 0681.54015, MR 1021455
Reference: [5] N. Levine: Semi-open sets and semi continuity in topological spaces.Amer. Math. Monthly 70 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.1080/00029890.1963.11990039
Reference: [6] S. N. Maheshwari, R. Prasad: Semi-open sets and semi continuity in bitopological spaces.Math. Notae XXVI (1977), 29-37. MR 0536731
Reference: [7] S. N. Maheshwari, R. Prasad: Pairwise irresolute functions.Mathematica 18 (1976), no. 2, 169-172. Zbl 0387.54015, MR 0493987
Reference: [8] P. M. Pu, Y. M. Liu: Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore Smith Convergence.J. Math. Anal. Appl. 76 (1980), 371-599. MR 0587361
Reference: [9] P. M. Pu, Y. M. Liu: Fuzzy topology II, Product and Quotient spaces.J. Math. Anal. Appl. 77 (1980), 20-37. Zbl 0447.54007, MR 0591259
Reference: [10] S. S. Thakur, R. Malviya: Semi open sets and semi continuity in fuzzy bitopological spaces.Fuzzy Sets and Systems. (Accepted). Zbl 0867.54016
Reference: [11] T. H. Yalvac: Fuzzy sets and functions on fuzzy spaces.J. Math. Anal. Appl. 120 (1987), 409-423. Zbl 0639.54004, MR 0900757
Reference: [12] T. H. Yalvac: Semi interior and semi closure of a fuzzy set.J. Math. Anal. Appl. 132 (1988), 356-364. Zbl 0645.54007, MR 0943512, 10.1016/0022-247X(88)90067-4
Reference: [13] L. A. Zadeh: Fuzzy sets.Inform. and Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_121-1996-3_5.pdf 467.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo