Previous |  Up |  Next

Article

Title: The non-coincidence of ordinary and Peano derivatives (English)
Author: Buczolich, Zoltán
Author: Weil, Clifford E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 4
Year: 1999
Pages: 381-399
Summary lang: English
.
Category: math
.
Summary: Let $f H\subset\Bbb R\to\Bbb R$ be $k$ times differentiable in both the usual (iterative) and Peano senses. We investigate when the usual derivatives and the corresponding Peano derivatives are different and the nature of the set where they are different. (English)
Keyword: Peano derivatives
Keyword: nowhere dense perfect sets
Keyword: porosity
MSC: 26A24
idZBL: Zbl 0936.26002
idMR: MR1722874
DOI: 10.21136/MB.1999.125997
.
Date available: 2009-09-24T21:39:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125997
.
Reference: [1] H. Fejzić J. Mařík C. E. Weil: Extending Peano derivatives.Math. Bohem. 119 (1994), 387-406. MR 1316592
Reference: [2] V. Jarník: Sur l'extension du domaine de definition des fonctions d'une variable, qui laisse intacte la derivabilité de la fonction.Bull international de l'Acad Sci de Boheme, 1923.
Reference: [3] J. Mařík: Derivatives and closed sets.Acta. Math. Acad. Sci. Hungar. 43 (1998), 25-29. MR 0731958
Reference: [4] Clifford E. Weil: The Peano notion of higher order differentiation.Math. Japonica 42 (1995), 587-600. MR 1363850
.

Files

Files Size Format View
MathBohem_124-1999-4_3.pdf 3.314Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo