Previous |  Up |  Next

Article

Title: Killing's equations in dimension two and systems of finite type (English)
Author: Thompson, G.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 4
Year: 1999
Pages: 401-420
Summary lang: English
.
Category: math
.
Summary: A PDE system is said to be of finite type if all possible derivatives at some order can be solved for in terms lower order derivatives. An algorithm for determining whether a system of finite type has solutions is outlined. The results are then applied to the problem of characterizing symmetric linear connections in two dimensions that possess homogeneous linear and quadratic integrals of motions, that is, solving Killing's equations of degree one and two. (English)
Keyword: Killing’s equations
Keyword: symmetric linear connections
Keyword: linear integrals of motion
Keyword: system of finite type
Keyword: quadratic integrals of motion
MSC: 34A26
MSC: 35A05
MSC: 53B05
MSC: 53Z05
MSC: 70G45
MSC: 70H33
idZBL: Zbl 0952.70014
idMR: MR1722875
DOI: 10.21136/MB.1999.125998
.
Date available: 2009-09-24T21:39:15Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125998
.
Reference: [1] J. F. Pommaret: Systems of Partial Differential and Lie Pseudogroups.Gordon and Breach, New York, 1978. MR 0517402
Reference: [2] G. Thompson: Polynomial constants of motion in a flat space.J. Math. Phys. 25 (1984), 3474-3478. Zbl 0549.70008, MR 0767554, 10.1063/1.526114
Reference: [3] G. Thompson: Killing tensors in spaces of constant curvature.J. Math. Phys. 27(1986), 2693-2699. Zbl 0607.53025, MR 0861329, 10.1063/1.527288
Reference: [4] L. P. Eisenhart: Riemannian Geometry.Princeton University Press, 1925. MR 1487892
Reference: [5] L. P. Eisenhart: Non-Riemannian Geometry.Amer. Math. Soc. Colloquium Publications 8, New York, 1927. MR 1466961
Reference: [6] I. Anderson G. Thompson: The Inverse Problem of the Calculus of Variations for Ordinary differential Equations.Memoirs Amer. Math. Soc. 473, 1992. MR 1115829
Reference: [7] J. Levine: Invariant characterizations of two dimensional affine and metric spaces.Duke Math. J. 15 (1948), 69-77. Zbl 0029.41801, MR 0025236
Reference: [8] E. G. Kalnins W. Miller: Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations.SIAM J. Math. Anal. 11 (1980), 1011-1026. MR 0595827, 10.1137/0511089
.

Files

Files Size Format View
MathBohem_124-1999-4_4.pdf 3.030Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo