Previous |  Up |  Next


regular solutions; system of Schröder’s equations; functional-differential equations; initial set; initial point; functional equation; simultaneous solution; differential equation with delays; global transformation
We investigate simultaneous solutions of a system of Schroder's functional equations. Under certain assumptions these solutions are used in transformations of functional-differential equations the initial set of which consists of the initial point only.
[1] J. Čermák: On transformations of functional-differential equations. Arch. Math. (Brno) 29 (1993), 227-234. MR 1263124
[2] L. E. Eľsgolc: Intгoduction to the theory of differential equations with deviating argument. Nauka, Moscow, 1964. (In Russian.)
[3] M. Kuczma: Functional Equations in a Single Variable. Polish Scient. Publ., Warszawa, 1968. MR 0228862 | Zbl 0196.16403
[4] M. Kuczma B. Choczewski R. Ger: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. MR 1067720
[5] F. Neuman: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488-494. MR 0669790 | Zbl 0524.34070
[6] F. Neuman: Transformation and canonical forms of functional-differential equation. Proc. Roy. Soc. Edinburgh 115A (1990), 349-357. MR 1069527
[7] V. Tryhuk: The most general transformation of homogeneous retarded linear differential equations of the n-th order. Math. Slovaca 33 (1983), 15-21. MR 0689272 | Zbl 0514.34058
[8] M. Zdun: Note on commutable functions. Aequationes Math. 36 (1988), 153-164. DOI 10.1007/BF01836087 | MR 0972282 | Zbl 0662.39004
[9] M. Zdun: On simultaneous Abel equations. Aequationes Math. 38 (1989), 163-177. DOI 10.1007/BF01840002 | MR 1018910 | Zbl 0686.39009
Partner of
EuDML logo