Previous |  Up |  Next

Article

Title: Da Prato-Zabczyk's maximal inequality revisited. I. (English)
Author: Seidler, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 1
Year: 1993
Pages: 67-106
Summary lang: English
.
Category: math
.
Summary: Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk. (English)
Keyword: existence
Keyword: uniqueness
Keyword: regularity
Keyword: mild solutions
Keyword: semilinear non- autonomous stochastic parabolic equations
Keyword: locally Lipschitzian nonlinear terms
Keyword: factorization method
Keyword: stochastic evolution equations
Keyword: regularity properties
MSC: 35R60
MSC: 60H15
idZBL: Zbl 0785.35115
idMR: MR1213834
DOI: 10.21136/MB.1993.126013
.
Date available: 2009-09-24T20:57:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126013
.
Reference: [1] H. Amann: On abstract parabolic fundamental solutions.J. Math. Soc. Japan 59 (1987), 93-116. Zbl 0616.47032, MR 0867989, 10.2969/jmsj/03910093
Reference: [2] H. Amann: Parabolic evolution equations in interpolation and extrapolation spaces.J. Funct. Anal. 18 (1988), 233-270. Zbl 0654.47019, MR 0943499, 10.1016/0022-1236(88)90120-6
Reference: [3] R. F. Curtain A. J. Pritchard: Infinite dimensional linear system theory.Lecture Notes in Control Inform. Sci. 8, Springer-Verlag, Berlin a.o., 1978. MR 0516812
Reference: [4] G. Da Prato M. Ianelli L. Tubaro: Semi-linear stochastic differential equations in Hilbert spaces.Boll. Un. Mat. Ital. A(5) 16 (1979), 168-177. MR 0530145
Reference: [5] G. Da Prato S. Kwapieri J. Zabczyk: Regularity of solutions of linear stochastic equations in Hilbert spaces.Stochastics 23 (1987), 1-23. MR 0920798
Reference: [6] G. Da Prato J. Zabczyk: A note on semilinear stochastic equations.Differential Integral Equations 1 (1988), 143-155. MR 0922558
Reference: [7] G. Da Prato J. Zabczyk: A note on stochastic convolution.Stoch. Anal. Appl. 10 (1992), 143-153. MR 1154532, 10.1080/07362999208809260
Reference: [8] G. Da Prato J. Zabczyk: Non explosion, boundedness and ergodicity for stochastic semilinear equations.J. Differential Equations 98 (1992), 181-195. MR 1168978, 10.1016/0022-0396(92)90111-Y
Reference: [9] A. Friedman: Stochastic differential equations and applications I.Academic Press, New York a.o., 1975. MR 0494490
Reference: [10] T. Funaki: Regularity properties for stochastic partial differential equations of parabolic type.Osaka J. Math. 28 (1991), 495-516. Zbl 0770.60062, MR 1144470
Reference: [11] B. Goldys: Contributions to the theory of stochastic evolution equations.IMPAN Preprint 394, May 1987.
Reference: [12] B. Goldys: On some regularity properties of solutions to stochastic evolution equations in Hilbert spaces.Coiloq. Math. 58 (1990), 327-338. Zbl 0704.60059, MR 1060184, 10.4064/cm-58-2-327-338
Reference: [13] E. Heinz: Beiträge zur Störungstheorie der Spektralzerlegung.Math. Ann. 123 (1951), 415-438. Zbl 0043.32603, MR 0044747, 10.1007/BF02054965
Reference: [14] D. Henry: Geometric theory of semilinear parabolic equations.Lecture Notes in Math. 840, Springer-Verlag, Berlin a.o., 1981. Zbl 0456.35001, MR 0610244
Reference: [15] A. Ichikawa: Semilinear stochastic evolution equations: Boundedness, stability and invariant measures.Stochastics 15 (1984), 1-39. Zbl 0538.60068, MR 0738933, 10.1080/17442508408833293
Reference: [16] A. Ichikawa: Some inequalities for martingales and stochastic convolutions.Stoch. Anal. Appl. 4 (1986), 329-339. Zbl 0622.60066, MR 0857085, 10.1080/07362998608809094
Reference: [17] O. Kallenberg R. Sztencel: Some dimension-free features of vector-valued martingales.Probab. Theory Related Fields 88 (1991), 215-247. MR 1096481, 10.1007/BF01212560
Reference: [18] P. Kotelenez: A submartingale type inequality with applications to stochastic evolution equations.Stochastics 8 (1982), 139-151. Zbl 0495.60066, MR 0686575, 10.1080/17442508208833233
Reference: [19] P. Kotelenez: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations.Stoch. Anal. Appl. 2 (1984), 245-265. Zbl 0552.60058, MR 0757338, 10.1080/07362998408809036
Reference: [20] P. Kotelenez: A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations.Stochastics 21 (1987), 345-358. Zbl 0622.60065, MR 0905052, 10.1080/17442508708833463
Reference: [21] A. Kufner O. John S. Fučík: Function spaces.Academia, Praha, 1977. MR 0482102
Reference: [22] G. Leha G. Ritter: On diffusion processes and their semigroups in Hilbert spaces with an application to interacting stochastic systems.Ann. Probab. 12 (1984), 1077-1112. MR 0757771, 10.1214/aop/1176993143
Reference: [23] R. Manthey: On the solutions of reaction-diffusion equations with white noise.Forschungsergebnisse FSU Jena Nr. N/85/24, 1985. Zbl 0591.35029
Reference: [24] R. Manthey: Existence and uniqueness of a solution of a reaction-diffusion equation with polynomial nonlinearity and white noise disturbance.Math. Nachr. 125 (1986), 121-133. Zbl 0594.60063, MR 0847354, 10.1002/mana.19861250108
Reference: [25] R. Manthey: On the Cauchy problem for reaction-diffusion equations with white noise.Math. Nachr. 186 (1988), 209-228. Zbl 0658.60089, MR 0952473, 10.1002/mana.19881360114
Reference: [26] M. Metivier: Semimartingales: a course on stochastic processes.Walter de Gruyter, Berlin-New York, 1982. Zbl 0503.60054, MR 0688144
Reference: [27] A. Pazy: Semigroups of linear operators and applications to partial differential equations.Springer-Verlag, New York a.o., 1983. Zbl 0516.47023, MR 0710486
Reference: [28] K.-U. Schaumlöffel F. Flandoli: A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain.Stochastics Rep. 34 (1991), 241-255. MR 1124837, 10.1080/17442509108833684
Reference: [29] R. Seeley: Norms and domains of the complex powers $A_B^z$.Amer. J. Math. 93 (1971), 299-309. MR 0287376, 10.2307/2373377
Reference: [30] R. Seeley: Interpolation in $L_p$ with boundary conditions.Studia Math. 44 (1972), 47-60. Zbl 0237.46041, MR 0315432, 10.4064/sm-44-1-47-60
Reference: [31] П. E. Соболевский: Об уравнениях параболического типа в банаховом пространстве.Труды Mocкoв. Maт. Общ. 10 (1961), 297-350. Zbl 1160.68305, MR 0141900
Reference: [32] H. Tanabe: Equations of evolution.Pitman, London a.o., 1979. Zbl 0417.35003, MR 0533824
Reference: [33] H. Triebel: Interpolation theory, function spaces, differential operators.Deutscher Verlag der Wissenschaften, Berlin, 1978. Zbl 0387.46033, MR 0500580
Reference: [34] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by stochastic integral.Stoch. Anal. Appl. 2 (1984), 187-192. MR 0746435, 10.1080/07362998408809032
Reference: [35] L. Tubaro: Regularity results of the process $X(t) = \int_0^t U(t, s)g(s) dW_s$.Rend. Sem. Mat. Univ. Politec. Torino, Special Issue 1982, pp. 241-248. MR 0685397
.

Files

Files Size Format View
MathBohem_118-1993-1_8.pdf 4.279Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo