Previous |  Up |  Next

Article

Title: On the limits of solutions of functional differential equations (English)
Author: Pituk, Michal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 1
Year: 1993
Pages: 53-66
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to obtain sufficient conditions under which for every $\xi \in R^n$ there exists a solution $x$ of the functional differential equation $\dot{x}(t)=\int^t_c[d_sQ(t,s)]f(t,x(s)),\ t\in [t_0,T]$ such that $lim_{t\rightarrow T-}x(t)=\xi$. (English)
Keyword: completeness
Keyword: functional differential equation
Keyword: solution
Keyword: delay
MSC: 34K25
idZBL: Zbl 0778.34056
idMR: MR1213833
DOI: 10.21136/MB.1993.126015
.
Date available: 2009-09-24T20:57:16Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126015
.
Reference: [1] R. D. Driver: On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays.SIAM Rev. 10(1968), 329-341. Zbl 0165.42801, MR 0234091, 10.1137/1010058
Reference: [2] I. Győri: On existence of the limits of solutions of functional differential equations.Colloquia Mathematica Societatis János Bolyai 30. Qualitative Theory of Differential Equations, Szeged (Hungary), (1979), North-Holland Publ. Company, Amsterdam, (1980), 325-362. MR 0680602
Reference: [3] I. Győri: On the oscillatory behaviour of solutions of certain nonlinear and linear delay differential equations.Nonlinear Anal. 8 (1984), 429-439. MR 0741599, 10.1016/0362-546X(84)90083-X
Reference: [4] I. Győri, I. P. Stavroulakis: Positive solutions of functional differential equations.Boll. Un. Mat. Ital. B (7) 3 (1989), 185-198. MR 0997338
Reference: [5] J. Hale: Theory of Functional Differential Equations.Springer-Verlag, New York, 1977. Zbl 0352.34001, MR 0508721
Reference: [6] P. Hartman: Ordinary Differential Equations.John Wiley & Sons, New York-London-Sydney, 1964; Russian transl., Izdatel'stvo "Mir", Moscow. Zbl 0125.32102, MR 0171038
Reference: [7] J. Jarník, J. Kurzweil: Ryabov's special solutions of functional differential equations.Boll. Un. Mat. Ital. (4) 11 Suppl. fasc. 3 (1975), 198-208. Zbl 0319.34066, MR 0454264
Reference: [8] V. M. Popov: Pointwise degenaracy of linear time-invariant delay differential equations.J. Differential Equations 11 (1972), 541-561. MR 0296455, 10.1016/0022-0396(72)90066-6
Reference: [9] Yu. A. Ryabov: Certain asymptotic properties of linear systems with small time lag.Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Druzby Narodov Patrisa Lumumby 3 (1965), 153-164. (In Russian.) MR 0211010
Reference: [10] M. Švec: Some properties of functional differential equations.Boll. Un. Mat. Ital. (4) 11 Suppl. fasc. 3 (1975), 467-477. MR 0430476
Reference: [11] M. Švec: Some problems concerning the equivalence of two systems of differential equations.Proceedings Equadiff 6 Brno (1985), 171-179. MR 0877120
Reference: [12] A. M. Zverkin: Pointwise completeness of systems with delay.Differentsial'nye Uravneniya 9 (1973), 430-436. (In Russian.) MR 0316855
.

Files

Files Size Format View
MathBohem_118-1993-1_7.pdf 1.613Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo