| Title:
             | 
Convex isomorphism of $Q$-lattices (English) | 
| Author:
             | 
Emanovský, Petr | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
118 | 
| Issue:
             | 
1 | 
| Year:
             | 
1993 | 
| Pages:
             | 
37-42 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
V. I. Marmazejev introduced in [3] the following concept: two lattices are convex isomorphic if their lattices of all convex sublattices are isomorphic. He also gave a necessary and sufficient condition under which the lattice are convex isomorphic, in particular for modular, distributive and complemented lattices. The aim this paper is to generalize this concept to the $q$-lattices defined in [2] and to characterize the convex isomorphic $q$-lattices. (English) | 
| Keyword:
             | 
quasiorder | 
| Keyword:
             | 
convex isomorphism | 
| Keyword:
             | 
$q$-lattices | 
| MSC:
             | 
06A06 | 
| MSC:
             | 
06A10 | 
| MSC:
             | 
06B15 | 
| idZBL:
             | 
Zbl 0780.06002 | 
| idMR:
             | 
MR1213831 | 
| DOI:
             | 
10.21136/MB.1993.126019 | 
| . | 
| Date available:
             | 
2009-09-24T20:56:57Z | 
| Last updated:
             | 
2020-07-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/126019 | 
| . | 
| Reference:
             | 
[1] Emanovský P.: Convex isomorphic ordered sets.Mathematica Bohemica 118 (1993), 29-35. MR 1213830 | 
| Reference:
             | 
[2] Chajda I.: Lattices in quasiordered set.Acta Univ. Palack. Olomouc 31 (1992), to appear. MR 1212600 | 
| Reference:
             | 
[3] Marmazejev V. I.: The lattice of convex sublattices of a lattice.Mežvuzovskij naučnyj sbornik, Saratov (1986), 50-58. (In Russian.) MR 0957970 | 
| Reference:
             | 
[4] Szász G.: Théorie des trellis.Akadémiai Kiadó, Budapest, 1971, | 
| . |