Previous |  Up |  Next

Article

Title: A note on integration of rational functions (English)
Author: Mařík, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 4
Year: 1991
Pages: 405-411
Summary lang: English
.
Category: math
.
Summary: Let $P$ and $Q$ be polynomials in one variable with complex coefficients and let $n$ be a natural number. Suppose that $Q$ is not constant and has only simple roots. Then there is a rational function $\varphi$ with $\varphi '=P/Q^{n+1}$ if and only if the Wronskian of the functions $Q',(Q^2)',\ldots,(Q^n)',P$ is divisible by $Q$. (English)
Keyword: integration
Keyword: primitive
Keyword: rational function
Keyword: Wronskian
MSC: 26C15
idZBL: Zbl 0739.26012
idMR: MR1146400
DOI: 10.21136/MB.1991.126024
.
Date available: 2009-09-24T20:48:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126024
.
Reference: [1] G. H. Hardy: The integration of functions of a single variable.Second edition, Cambridge, 1928.
.

Files

Files Size Format View
MathBohem_116-1991-4_9.pdf 863.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo