Previous |  Up |  Next

Article

Title: Elementary evaluation of Fresnel's integrals (English)
Author: Výborný, Rudolf
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 4
Year: 1991
Pages: 401-404
Summary lang: English
.
Category: math
.
Summary: We evaluate the Fresnel integrals by using the Leibniz rule only on a finite interval. (English)
Keyword: evaluation
Keyword: Fresnel integrals
Keyword: Leibniz rule
MSC: 26A06
MSC: 26A09
idZBL: Zbl 0739.26001
idMR: MR1146399
DOI: 10.21136/MB.1991.126022
.
Date available: 2009-09-24T20:47:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126022
.
Reference: [FL] H. Flanders: On the Fresnel integrals.Amer. Math. Monthly 89 (1982), 264-266. Zbl 0599.26012, MR 0650673, 10.1080/00029890.1982.11995429
Reference: [JA] V. Jarník: Integrální počet II.ČSAV, Praha, 1955, pp. 340-342 and 361-363.
Reference: [Mac] E. J. McShane: Unified integration.Academic Press, Inc., Orlando, 1983. Zbl 0551.28001, MR 0740710
Reference: [ML] R. M. McLeod: The generalized Riemann integral.The Mathematical Association of America, Washington DC, 1980. Zbl 0486.26005, MR 0588510
Reference: [SW] J. D. DePree, Ch. W. Swartz: Introduction to Real Analysis.John Wiley & Sons, New York, 1988, p. 199. MR 1042294
Reference: [WE] R. Weinstock: Elementary Evaluations of $\int_0^{infty} e^{-x^2} dx$, $\int_0^{infty} \cos x^2 dx$, and $\int_0^{infty} \sin x^2 dx$.Amer. Math. Monthly 97 (1990), 39-42. MR 1034348
Reference: [YZ] J. van Yzeren: Moivre's and Fresnel's integrals by simple integration.Amer. Math. Monthly 86 (1979), 691-693. Zbl 0446.26003, MR 1539141
.

Files

Files Size Format View
MathBohem_116-1991-4_8.pdf 641.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo