Previous |  Up |  Next

Article

Title: Solution semigroup and invariant manifolds for functional equations with infinite delay (English)
Author: Petzeltová, Hana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 2
Year: 1993
Pages: 175-193
Summary lang: English
.
Category: math
.
Summary: It is proved that parabolic equations with infinite delay generate $C_0$-semigroup on the space of initial conditions, such that local stable and unstable manifolds can be constructed for a fully nonlinear problems with help of usual methods of the theory of parabolic equations. (English)
Keyword: nonlinear diffusion-type equations with infinite delay
Keyword: existence of stable and unstable manifolds
Keyword: parabolic functional equation
Keyword: infinite delay
Keyword: stable and unstable manifolds
MSC: 34K30
MSC: 34K99
MSC: 35B35
MSC: 35B40
MSC: 35R10
MSC: 45K05
MSC: 47D06
MSC: 47N20
idZBL: Zbl 0798.35153
idMR: MR1223484
DOI: 10.21136/MB.1993.126045
.
Date available: 2009-09-24T20:58:44Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126045
.
Reference: [1] G. Da Prato A. Lunardi: Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space.Arch. Rat. Mech. Anal. 101 (1988), 115-141. MR 0921935, 10.1007/BF00251457
Reference: [2] G. Da Prato A. Lunardi: Solvability on the real line of a class of linear Volterra integrodifferential equations of parabolic type.Ann. Mat. Pura Appl. 150 (1988), 67-117. MR 0946030, 10.1007/BF01761464
Reference: [3] J. K. Hale J. Kato: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978), 11-41. MR 0492721
Reference: [4] D. Henry: Geometric theory of semilinear parabolic equations.Lecture Notes in Math., vol. 840, Springer Verlag, 1981. Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [5] S. O. Londen J. A. Nohel: Nonlinear Volterra integrodifferential equation occuring in heat flow.J. Int. Equations 6(1984), 11-50. MR 0727934
Reference: [6] A. Lunardi: Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations.Math. Nachr. 121 (1985), 295-318. Zbl 0568.47035, MR 0809327, 10.1002/mana.19851210120
Reference: [7] A. Lunardi: On the linear heat equation for materials of fading memory type.SIAM J. Math. Anal. 21 (1990), 1213-1224. MR 1062400, 10.1137/0521066
Reference: [8] J. Milota: Asymptotic behaviour of parabolic equations with infinite delay.Volterra Integrodiff. Eqs. and Appl., Pitman Research Notes in Math. 190, 1989, pp. 295-305. MR 1018887
Reference: [9] J. Milota: Stability and saddle-point property for a linear autonomous functional parabolic equations.Comm. Math. Univ. Carolinae 27 (1986), 87-101. MR 0843423
Reference: [10] H. Petzeltová J. Milota: Resolvent operator for abstract functional differential equations with infinite delay.Numer. Funct. Anal. and Optimiz. 9 (1987), 779-807. MR 0910855, 10.1080/01630568708816261
Reference: [11] E. Sinestrari: On the abstract Cauchy problem of parabolic type in the spaces of continuous functions.J. Math. An. Appl. 107 (1985), 16-66. MR 0786012, 10.1016/0022-247X(85)90353-1
Reference: [12] C. C. Travis G. F. Webb: Existence and stability for partial functional differential equations.TAMS 200 (1974), 395-418. MR 0382808, 10.1090/S0002-9947-1974-0382808-3
.

Files

Files Size Format View
MathBohem_118-1993-2_8.pdf 2.135Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo