Previous |  Up |  Next

Article

Title: $L$-groups versus $k$-groups (English)
Author: Frič, Roman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 2
Year: 1993
Pages: 113-121
Summary lang: English
.
Category: math
.
Summary: We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega_1$. (English)
Keyword: sequential convergence
Keyword: FLUSH-convergence
Keyword: free $k$-group
Keyword: free sequential group
Keyword: sequential space
Keyword: sequential order
MSC: 22A99
MSC: 54A20
MSC: 54H11
idZBL: Zbl 0812.54004
idMR: MR1223477
DOI: 10.21136/MB.1993.126049
.
Date available: 2009-09-24T20:57:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126049
.
Reference: [1] R. Engelking: General topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [2] T. H. Fay E. T. Ordman B. V. Smith-Thomas: The free topological group over rational.General Topology Appl. 10 (1979), 33-47. MR 0519712, 10.1016/0016-660X(79)90027-8
Reference: [3] R. Frič J. Gerlits: On the sequential order.Math. Slovaca 42 (1992), 505-512. MR 1195044
Reference: [4] R. Frič M. Hušek V. Koutník: Sequential groups, k-groups and other categories of continuous algebras.to appear. MR 1244367
Reference: [5] R. Frič F. Zanolin: Sequential convergence in free groups.Rend. Ist. Matem. Univ. Trieste 78 (1986), 200-218. MR 0928331
Reference: [6] R. Frič F. Zanolin: Fine convergence in free groups.Czechoslovak Math. J. 36 (1983), 134-139. MR 0822875
Reference: [7] A. Kaminski: On characterization of topological convergence.Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 50-70. MR 0639315
Reference: [8] B. Kneis: Completion functors for categories of convergence spaces. II. Embedding of separated acceptable spaces into their completion.Math. Nachr. 185 (1988), 181-211. Zbl 0676.54011, MR 0944227, 10.1002/mana.19881350116
Reference: [9] V. Koutník: Completeness of sequential convergence groups.Studia Math. 77 (1984), 454-464. MR 0751766, 10.4064/sm-77-5-455-464
Reference: [10] V. Koutník: Closure and topological sequential convergence.Convergence structures 1984, (Proc. Conference on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 199-204. MR 0835486
Reference: [11] W. F. LaMartin: On the foundations of k-group theory.Diss. Math. 146(1911). MR 0480835
Reference: [12] W. F. LaMartin: Epics in the category of $T_2$ k-groups need not have dense range.Colloq. Math. 30 (1976), 37-41. Zbl 0353.22001, MR 0427524
Reference: [13] M. McCord: Classifying spaces and infinite symmetric products.Trans. Amer. Math. Soc. 146 (1969), 273-298. Zbl 0193.23604, MR 0251719, 10.1090/S0002-9947-1969-0251719-4
Reference: [14] P. Mikusinski: Problems posed at the Conference.Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 110-112. MR 0639325
Reference: [15] J. Novák: On convergence groups.Czechoslovak Math. J. 20(1970), 357-374. MR 0263973
Reference: [16] E. Nummela: Uniform free topological groups and Samuel compactification.Topology Appl. 13 (1982), 77-83. MR 0637429, 10.1016/0166-8641(82)90009-8
Reference: [17] P. J. Nyikos: Metrizability and the Fréchet-Urysohn property in topological groups.Proc. Amer. Math. Soc. 88(1981), 793-801. Zbl 0474.22001, MR 0630057
Reference: [18] E. T. Ordman: Free k-groups and free topological groups.General Topology Appl. 5 (1975), 205-219. Zbl 0306.22003, MR 0427525, 10.1016/0016-660X(75)90021-5
Reference: [19] E. T. Ordman B. V. Smith-Thomas: Sequential conditions and free topological groups.Proc. Amer. Math. Soc. 19 (1980), 319-326. MR 0565363, 10.1090/S0002-9939-1980-0565363-2
Reference: [20] H.-F. Porst: Free algebras over cartesian closed topological categories.General Topology and its Relation to Modern Analysis and Algebra, VI, (Proc Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 437-450. MR 0952627
Reference: [21] O. Schreier: Abstrakte kontinuierliche Gruppen.Hamb. Abh. 4 (1926), 15-32. 10.1007/BF02950716
Reference: [22] O. Wyler: Convenient categories for topology.General Topology Appl. 3 (1973), 225-242. Zbl 0264.54018, MR 0324622, 10.1016/0016-660X(72)90014-1
.

Files

Files Size Format View
MathBohem_118-1993-2_1.pdf 1.171Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo