Previous |  Up |  Next

Article

Title: On the matrices of central linear mappings (English)
Author: Havlicek, Hans
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 2
Year: 1996
Pages: 151-156
Summary lang: English
.
Category: math
.
Summary: We show that a central linear mapping of a projectively embedded Euclidean $n$-space onto a projectively embedded Euclidean $m$-space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity $\ge2m-n+1$. This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates. (English)
Keyword: linear mapping
Keyword: axonometry
Keyword: singular values
MSC: 15A18
MSC: 51N05
MSC: 51N15
MSC: 51N20
MSC: 68U05
idZBL: Zbl 0863.51020
idMR: MR1400607
DOI: 10.21136/MB.1996.126103
.
Date available: 2009-09-24T21:17:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126103
.
Reference: [1] Brauner H.: Zur Theorie linearer Abbildungen.Abh. Math. Sem. Univ. Hamburg 53 (1983), 154-169. Zbl 0519.51003, MR 0732814, 10.1007/BF02941317
Reference: [2] Brauner H.: Lineare Abbildungen aus euklidischen Räumen.Beitr. Algebra u. Geometrie 21 (1986), 5-26. Zbl 0589.51004, MR 0839966
Reference: [3] Brauner H.: Zum Satz von Pohlke in n-dimensionalen euklidischen Räumen.Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 195 (1986), 585-591. MR 0894185
Reference: [4] Havel V.: On decomposition of singular mappings.(In Czech). Časopis Pěst. Mat. 85 (1960), 439-446. MR 0126456
Reference: [5] Paukowitsch P.: Fundamental ideas for computer-supported descriptive geometry.Comput. & Graphics 12 (1988), 3-14. 10.1016/0097-8493(88)90003-9
Reference: [6] Szabó J.: Eine analytische Bedingung dafür, daß eine Zentralaxonometrie Zentralprojektion ist.Publ. Math. Debrecen 44 (1994), 381-390. MR 1291984
Reference: [7] Szabó J., Stachel H., Vogel H.: Ein Satz über die Zentralaxonometrie.Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 203 (1994), 1-11. MR 1335603
Reference: [8] Strang G.: Linear Algebra and Its Applications.Зrd ed. Harcourt Brace Jovanovich, San Diego, 1988. MR 0575349
.

Files

Files Size Format View
MathBohem_121-1996-2_7.pdf 388.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo