Previous |  Up |  Next

Article

Title: Existence of quasicontinuous selections for the space $2\sp {f R}$ (English)
Author: Kupka, Ivan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 2
Year: 1996
Pages: 157-163
Summary lang: English
.
Category: math
.
Summary: The paper presents new quasicontinuous selection theorem for continuous multifunctions $F X \longrightarrow\Bbb R$ with closed values, $X$ being an arbitrary topological space. It is known that for $2^{\Bbb R}$ with the Vietoris topology there is no continuous selection. The result presented here enables us to show that there exists a quasicontinuous and upper$\langle$lower$\rangle$-semicontinuous selection for this space. Moreover, one can construct a selection whose set of points of discontinuity is nowhere dense. (English)
Keyword: continuous multifunction
Keyword: selection
Keyword: quasicontinuity
MSC: 54C08
MSC: 54C65
idZBL: Zbl 0863.54014
idMR: MR1400608
DOI: 10.21136/MB.1996.126098
.
Date available: 2009-09-24T21:17:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126098
.
Reference: [1] R. Engelking R. V. Heath E. Michael: Topological well-ordering and continuous selections.Invent. Math. 6 (1968), 150-158. MR 0244959, 10.1007/BF01425452
Reference: [2] I. Kupka: Quasicontinuous selections for compact-valued multifunctions.Math. Slovaca 43 (1993), 69-75. Zbl 0784.54023, MR 1216269
Reference: [3] I. Kupka: Continuous multifunction from [-1,0] to R having noncontinuous selection.Publ. Math. (Submitted).
Reference: [4] K. Kuratowski: Topologie I.PWN Warszawa, 1952.
Reference: [5] N. Levine: Semi-open sets and semi-continuity in topological spaces.Amer. Math. Monthly 70 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.1080/00029890.1963.11990039
Reference: [6] M. Matejdes: Sur les sélecteurs des multifonctions.Math. Slovaca 37 (1987), 111-124. Zbl 0629.54013, MR 0899022
Reference: [7] M. Matejdes: On selections of multifunctions.Math. Bohem. 118 (1993), 255-260. Zbl 0785.54022, MR 1239120
Reference: [8] M. Matejdes: Quasi-continuous and cliquish selections of multifunctions on product spaces.Real Anal. Exchange. To appear. Zbl 0782.54019, MR 1205513
Reference: [9] E. Michael: Continuous selections I.Ann. of Math. 63 (1956), 361-382. Zbl 0071.15902, MR 0077107, 10.2307/1969615
Reference: [10] E. Michael: Continuous selections II.Ann. of Math. 64 (1956), 562-580. Zbl 0073.17702, MR 0080909, 10.2307/1969603
Reference: [11] S. B. Nadler: Hyperspaces of sets.Marcel Dekker, Inc., New York and Bassel, 1978. Zbl 0432.54007, MR 0500811
Reference: [12] T. Neubrunn: Quasi-continuity.Real Anal. Exchange H (1988-89), 259-306. MR 0995972
Reference: [13] A. Neubrunnová: On certain generalizations of the notion of continuity.Mat. Časopis 23 (1973), 374-380. MR 0339051
.

Files

Files Size Format View
MathBohem_121-1996-2_8.pdf 368.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo