Previous |  Up |  Next


Title: A method for determining constants in the linear combination of exponentials (English)
Author: Cerha, J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 2
Year: 1996
Pages: 121-122
Summary lang: English
Category: math
Summary: Shifting a numerically given function $b_1 \exp a_1t + \dots+ b_n \exp a_n t$ we obtain a fundamental matrix of the linear differential system $\dot{y} =Ay$ with a constant matrix $A$. Using the fundamental matrix we calculate $A$, calculating the eigenvalues of $A$ we obtain $a_1, \dots, a_n$ and using the least square method we determine $b_1, \dots, b_n$. (English)
Keyword: fundamental matrix
Keyword: eigenvalues
Keyword: linear system of ordinary differential equations
Keyword: linear differential system
Keyword: shifted exponentials
Keyword: the least square method
MSC: 34A30
MSC: 65D15
MSC: 65D20
MSC: 65F15
MSC: 65L99
idZBL: Zbl 0863.65003
idMR: MR1400603
DOI: 10.21136/MB.1996.126106
Date available: 2009-09-24T21:17:05Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] P. Hartman: Ordinary differential equations.John Wiley & Sons, New York, London, Sydney, 1964. Zbl 0125.32102, MR 0171038


Files Size Format View
MathBohem_121-1996-2_3.pdf 223.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo