Previous |  Up |  Next


Leray-Schauder theorem; periodic boundary value problem; existence; uniqueness; periodic solutions; convexity of set of solutions
In the paper some existence results for periodic boundary value problems for the ordinary differential equation of the second order in a Hilbert space are given. Under some auxiliary assumptions the set of solutions is compact and connected or it is convex.
[D] K. Deimling: Ordinary differential equations in Banach spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0463601 | Zbl 0361.34050
[GŠŠ] M. Greguš M. Švec V. Šeda: Ordinary differential equations. Alfa, Bratislava, 1985. (In Slovak.)
[G] Chaitan P. Gupta: Boundary value problems for differential equations in Hilbert spaces involving reflection of the argument. JMAA 128 (1987), 375-388. MR 0917372
[M] J. Mawhin: Two point boundary value problems for nonlinear second order differential equations in Hilbert spaces. Tohoku Math. J. 32 (1980), 225-233. DOI 10.2748/tmj/1178229639 | MR 0580278 | Zbl 0436.34057
[R] B. Rudolf: Periodic boundary value problem in Hilbert space for differential equation of second order with reflection of the argument. Mathematica Slovaca 42 (1992), 65-84. MR 1159492 | Zbl 0744.34062
[ST] K. Schmitt R. Thompson: Boundary value problems for infinite systems of second-order differential equations. J. Differential Equations 18 (1975), 277-295. DOI 10.1016/0022-0396(75)90063-7 | MR 0374594
[Z] E. Zeidler: Functional analysis and its applications I. Springer-Verlag, 1986. MR 0816732 | Zbl 0583.47050
Partner of
EuDML logo