Previous |  Up |  Next

Article

Title: Applications of the Hadamard product in geometric function theory (English)
Author: Jakubowski, Zbigniew Jerzy
Author: Liczberski, Piotr
Author: Żywień, Łucja
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 2
Year: 1991
Pages: 148-159
Summary lang: English
.
Category: math
.
Summary: Let $\Cal A$ denote the set of functions $F$ holomorphic in the unit disc, normalized clasically: $F(0)=0, F'(0)=1$, whereas $A\subset \Cal A$ is an arbitrarily fixed subset. In this paper various properties of the classes $A_\alpha, \alpha \in C \{-1,-\frac{1}{2},\ldots\}$, of functions of the form $f=F*k_\alpha$ are studied, where $F\in .A$, $k_\alpha(z)=k(z,\alpha)=z+\frac{1}{1+\alpha}z^2+\ldots + \frac{1}{1+(n-1)\alpha}z^n+\ldots$, and $F*k_\alpha$ denotes the Hadamard product of the functions $F$ and $k_\alpha$. Some special cases of the set $A$ were considered by other authors (see, for example, [15],[6],[3]). (English)
Keyword: Hadamard product
Keyword: typically real functions
Keyword: class of type $A_\alpha$
MSC: 30C80
MSC: 30C99
idZBL: Zbl 0732.30018
idMR: MR1111999
DOI: 10.21136/MB.1991.126141
.
Date available: 2009-09-24T20:44:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126141
.
Reference: [1] L. Brickman D. R. Wilken: Support points of the set of univalent functions.Proc. Amer. Math. Soc. 42 (1974), 523-528. MR 0328057, 10.1090/S0002-9939-1974-0328057-1
Reference: [2] D. M. Campbell V. Singh: Valence properties of solution of differential functions.Pac. J. Math., v. 84, No. í (1979), 29-33. MR 0559624, 10.2140/pjm.1979.84.29
Reference: [3] P. N. Chichra: New subclasses of the class of close - to - convex functions.PAMS, v. 62,. No. 1 (1977), 37-43. Zbl 0355.30013, MR 0425097, 10.1090/S0002-9939-1977-0425097-1
Reference: [4] A. W. Goodman: Univalent functions.v. 1, 2. Mariner Publishing Company, 1983. Zbl 1041.30501
Reference: [5] I. S. Jack: Functions staгlike and convex of order $\alpha$.J. London Math. Soc., v. 2, No. 3 3 (1971), 469-474. MR 0281897, 10.1112/jlms/s2-3.3.469
Reference: [6] Z. J. Jakubowski: On some classes of analytic functions.Complex Analysis. Sofia (1989), 241-249. Proc. of the IXth Instructional conference on the theory of extremal problems, Sielpia (1987), 59-78. MR 1127640
Reference: [7] J. Krzyż Z. Lewandowski: On the integral of univalent functions.Bull. Acad. Polon. Sci., 11, 7 (1963), 447-448. MR 0153830
Reference: [8] Z. Lewandowski S. Miller E. Zlotkiewicz: Generating functions for some classes of univalent functions.Proc. Amer. Math. Soc., 56 (1976), 111-117. MR 0399438, 10.1090/S0002-9939-1976-0399438-7
Reference: [9] S. Miller: Differential inequalities and Caгathéodory functions.Bull. of Amer. Math. Soc. v. 81, No. 1 (1975), 79-81. MR 0355056, 10.1090/S0002-9904-1975-13643-3
Reference: [10] N. N. Pascu: Јanowski alpha-starlike-convex functions.Studia Univ. Babes-Bolyai, Mathematica (1976), 23-27. MR 0396929
Reference: [11] M. S. Robertson: Extremal problems for analytic functions with positive real part and applications.Tгans. Amer. Math. Soc., 106 (1963), 236-253. MR 0142756, 10.1090/S0002-9947-1963-0142756-3
Reference: [12] W. W. Rogosiński: Übeг positive harmonische Entwicklungen und typisch - reel Potenzreihen.Math. Z., 35 (1932), 93-121. MR 1545292, 10.1007/BF01186552
Reference: [13] S. Ruscheweyh: Convolutions in geometric function theory.Press Univ. Montreal, 1982. Zbl 0499.30001, MR 0674296
Reference: [14] S. Schober: Univalent functions - selected topics.Lecture Notes in Math., 1975. Zbl 0306.30018
Reference: [15] K. Skalska: Certain subclasses of the class of typically real functions.Ann. Polon. Math., 38 (1980), 141-152. Zbl 0465.30012, MR 0599238, 10.4064/ap-38-2-141-152
Reference: [16] O. Toeplitz: Die linearen vollkommen Räume der Funktionentheorie.Comment. Math. Helv., 23 (1949), 222- 242. MR 0032952, 10.1007/BF02565600
.

Files

Files Size Format View
MathBohem_116-1991-2_4.pdf 1.529Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo