Previous |  Up |  Next

Article

Keywords:
reflections; isometric flows; transversally symmetric immersions; locally transversally symmetric submanifolds; (locally) symmetric and transversally symmetric immersions and submanifolds; Killing-transversally symmetric spaces; normal flow space forms
Summary:
We introduce the notions of (extrinsic) locally transversally symmetric immersions and submanifolds in a Riemannian manifold equipped with a unit Killing vector field as analogues of those of (extrinsic) locally symmetric immersions and submanifolds. We treat their geometric properties, derive several characterizations and give a list of examples.
References:
[1] E. Backes, H. Reckziegel: On symmetric submanifolds of spaces of constant curvature. Math. Ann. 263 (1983), 419-433. DOI 10.1007/BF01457052 | MR 0707240 | Zbl 0499.53045
[2] A. L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987. MR 0867684 | Zbl 0613.53001
[3] P. Bueken, L. Vanhecke: Isometric reflections on Sasakian space forms. Proc. VI. Intern. Coll. Differential Geometry, Santiago de Compostela (L. Cordero, ed.). Universidade de Santiago de Compostela, 1988, pp. 51-59. MR 1040835
[4] B. Y. Chen, L. Vanhecke: Isometric, holomorphic and symplectic reflections. Geom. Dedicata 29 (1989), 259-277. DOI 10.1007/BF00572443 | MR 0995302 | Zbl 0673.53035
[5] D. Ferus: Symmetric submanifolds of Euclidean space. Math. Ann. 247 (1980), 81-93. DOI 10.1007/BF01359868 | MR 0565140 | Zbl 0446.53041
[6] J. C. González-Dávila M. C. González-Dávila, L. Vanhecke: Reflections and isometric flows. Kyungpook Math. J. 35 (1995), 113-144. MR 1345075
[7] J. C. González-Dávila M. C. González-Dávila, L. Vanhecke: Normal flow space forms and their classification. Publ. Math. Debrecen 48 (1995), 1-21. MR 1382799
[8] J. C. González-Dávila M. C. González-Dávila, L. Vanhecke: Classification of Killing-transversally symmetric spaces. Tsukuba J. Math. 20 (1996), 321-347. MR 1422623
[9] J. C. González-Dávila M. C. González-Dávila, L. Vanhecke: Invariant submanifolds in flow geometry. J. Austral. Math. Soc. To appear.
[10] J. C. González-Dávila, L. Vanhecke: Locally symmetric submanifolds. Czechoslovak Math. J. To appear. MR 1708378
[11] H. Naitoh: Symmetric submanifolds of compact symmetric spaces. Differential Geometry of Submanifolds, Proceedings, Kyoto 1984, Lecture Notes in Math. 1090 (K. Kenmotsu, ed.). Springer, Berlin, 1984, pp. 116-128. MR 0775150 | Zbl 0546.53034
[12] L. Nicolodi, L. Vanhecke: Harmonic and isometric rotations around a curve. Illinois J. Math. 57 (1993), 85-100. MR 1193131 | Zbl 0795.53014
[13] B. O'Neill: The fundamental equation of a submersion. Michigan Math. J. 13 (1966), 459-469. DOI 10.1307/mmj/1028999604 | MR 0200865
[14] B. L. Reinhart: Differential geometry of foliations. Ergeb. Math. Grenzgeb. 99, Springer, Berlin, 1983. MR 0705126 | Zbl 0506.53018
[15] W. Strübing: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245 (1979), 37-44. DOI 10.1007/BF01420428 | MR 0552577
[16] M. Takeuchi: Parallel submanifolds of space forms. Manifolds and Lie groups, Papers in honor of Yozo Matsushima (J. Hano, A. Morimoto, S. Murakami, K. Okamoto, H. Ozeki, eds.). Progress in Math., Birkhäuser, Boston, 1981, pp. 429-447. MR 0642871 | Zbl 0481.53047
[17] Ph. Tondeur: Foliations on Riemannian manifolds. Springer, Berlin, 1988. MR 0934020 | Zbl 0643.53024
[18] Ph. Tondeur, L. Vanhecke: Transversally symmetric Riemannian foliations. Tohoku Math. J. 42 (1990), 307-317. DOI 10.2748/tmj/1178227612 | MR 1066663 | Zbl 0718.53022
[19] L. Vanhecke: Geometry in normal and tubular neighborhoods. Proc. Workshop on Differential Geometry and Topology Cala Gonone (Sardinia) 1988. Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento 58 (1988), 73-176. MR 1122858
Partner of
EuDML logo