Previous |  Up |  Next

Article

Title: Reflection and a mixed boundary value problem concerning analytic functions (English)
Author: Dontová, Eva
Author: Dont, Miroslav
Author: Král, Josef
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 3
Year: 1997
Pages: 317-336
Summary lang: English
.
Category: math
.
Summary: A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain. (English)
Keyword: boundary value problem
Keyword: integral equations
Keyword: Fredholm type equation
MSC: 30E25
MSC: 31A25
idZBL: Zbl 0903.30028
idMR: MR1600664
DOI: 10.21136/MB.1997.126150
.
Date available: 2009-09-24T21:26:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126150
.
Reference: [1] K. Astala: Calderón's problem for Lipschitz classes and the dimension of quasicircles.Rev. Mat. Iberoamericana 4 (1988), 469-486. Zbl 0703.30036, MR 1048585, 10.4171/RMI/81
Reference: [2] Ju. D. Burago V. G. Maz'ja: Some problems of potential theory and theory of functions for domains with nonregular boundaries.Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.)
Reference: [3] E. Dontová: Reflection and the Dirichlet and Neumann problems.Thesis, Prague, 1990. (In Czech.)
Reference: [4] E. Dontová: Reflection and the Dirichlet problem on doubly connected regions.Časopis Pěst. Mat. 113 (1988), 122-147. MR 0949040
Reference: [5] E. Dontová: Reflection and the Neumann problem in doubly connected regions.Časopis Pěst. Mat. 113 (1988), 148-168. MR 0949041
Reference: [6] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325
Reference: [7] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44-76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [8] C. Jacob: Sur le problème de Dirichlet dans un domaine plan multiplement connexe et ses applications a l'Hydrodynamique.J. Math. Pures Appl. (9) 18 (1939), 363-383. MR 0001692
Reference: [9] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15 (1965), 454-473, 565-588. MR 0190363
Reference: [10] J. Král: Integral Operators in Potential Theory.Lecture Notes in Math. Vol. 823, Springer-Verlag, 1980. MR 0590244, 10.1007/BFb0091035
Reference: [11] J. Král: Boundary regularity and normal derivatives of logarithmic potentials.Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), 241-258. MR 0906210
Reference: [12] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [13] J. Král D. Medková: Angular limits of the integrals of the Cauchy type.Preprint 47/1994, MU AV ČR. MR 1479307
Reference: [14] J. Král D. Medková: Angular limits of double layer potentials.Czechoslovak Math. J. 45 (1995), 267-292. MR 1331464
Reference: [15] V. G. Maz'ja: Boundary Integral Equations.Analysis IV, Encyclopaedia of Mathematical Sciences Vol. 27, Springer-Verlag, 1991.
Reference: [16] N. I. Muschelišvili: On the fundamental mixed boundary value problem of logarithmic potential for multiply connected domains.Soobščenija Akad. Nauk Gruzinskoj SSR 2 (1941), no. 4, 309-313. (In Russian.) MR 0010234
Reference: [17] S. Saks: Theory of the Integral.Dover Publications, New York. 1964. MR 0167578
Reference: [18] J. M. Sloss: Global reflection for a class of simple closed curves.Pacific J. Math. 52 (1974), 247-260. Zbl 0243.30004, MR 0379807, 10.2140/pjm.1974.52.247
Reference: [19] J. M. Sloss: The plane Dirichlet problem for certain multiply connected regions.J. Anal. Math. 28 (1975), 86-100. Zbl 0325.31004, 10.1007/BF02786808
Reference: [20] J. M. Sloss: A new integral equation for certain plane Dirichlet problems.SIAM J. Math. 6 (1975), 998-1006. Zbl 0323.35025, MR 0437784, 10.1137/0506088
Reference: [21] J. M. Sloss J. C. Bruch: Harmonic approximation with Dirichlet data on doubly connected regions.SIAM J. Numer. Anal. 14, (1974), 994-1005. MR 0478687, 10.1137/0714067
Reference: [22] J. Veselý: On the mixed boundary problem of the theory of analytic functions.Časopis Pěst. Mat. 91 (1966), 320-336. (In Czech.) MR 0206294
Reference: [23] W. L. Wendland: Boundary element methods and their asymptotic convergence.Lecture Notes of the CISM, Summer-School on Theoretical acoustic and numerical techniques, Int. Centre Mech. Sci., Udine (P. Filippi, ed.). Springer-Verlag, Wien, 1983, pp. 137-216. Zbl 0618.65109, MR 0762829
.

Files

Files Size Format View
MathBohem_122-1997-3_10.pdf 996.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo