Previous |  Up |  Next

Article

Title: Noether theorem and first integrals of constrained Lagrangean systems (English)
Author: Krupková, Olga
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 3
Year: 1997
Pages: 257-265
Summary lang: English
.
Category: math
.
Summary: The dynamics of singular Lagrangean systems is described by a distribution the rank of which is greater than one and may be non-constant. Consequently, these systems possess two kinds of conserved functions, namely, functions which are constant along extremals (constants of the motion), and functions which are constant on integral manifolds of the corresponding distribution (first integrals). It is known that with the help of the (First) Noether theorem one gets constants of the motion. In this paper it is shown that every constant of the motion obtained from the Noether theorem is a first integral; thus, Noether theorem can be used for an effective integration of the corresponding distribution. (English)
Keyword: Lagrangian system
Keyword: Lepagean two-form
Keyword: Euler-Lagrange form
Keyword: singular Lagrangian
Keyword: constrained system
Keyword: Noether theorem
Keyword: symmetry
Keyword: constants of motion
Keyword: first integrals
MSC: 37B99
MSC: 58F05
MSC: 58F35
MSC: 70H03
MSC: 70H33
MSC: 70H35
idZBL: Zbl 0897.58024
idMR: MR1600644
DOI: 10.21136/MB.1997.126152
.
Date available: 2009-09-24T21:26:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126152
.
Reference: [1] J. F. Cariñena M. F. Rañada: Noether's theorem for singular Lagrangians.Lett. Math. Phys. 15 (1988), 305-311. MR 0952453, 10.1007/BF00419588
Reference: [2] C Ferrario A. Passerini: Symmetries and constants of motion for constrained Lagrangian systems: a presymplectic version of the Noether theorem.J. Phys. A 23 (1990), 5061-5081. MR 1083892, 10.1088/0305-4470/23/21/040
Reference: [3] C. Ferrario A. Passerini: Dynamical symmetries in constrained systems: a Lagrangian analysis.J. Geom. Phys. 9 (1992), 121-148. MR 1166718, 10.1016/0393-0440(92)90016-T
Reference: [4] J. Hrivňák: Symmetries and first integrals of equations of motion in higher-order mechanics.Thesis, Dept. of Math., Silesian University, Opava, 1995, pp. 59. (In Czech.)
Reference: [5] D. Krupka: Some geometric aspects of variational problems in fibered manifolds.Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65.
Reference: [6] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections, II. Invariance.J. Math. Anal. Appl. 49 (1975), 180-206; 469-476. MR 0362397, 10.1016/0022-247X(75)90169-9
Reference: [7] D. Krupka: Geometry of Lagrangean structures 2.Arch. Math. (Brno) 22 (1986), 211-228. MR 0868536
Reference: [8] O. Krupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, II. Inverse problem.Arch. Math. (Brno) 22 (1986), 97-120; 23 (1987), 155-170. MR 0868124
Reference: [9] O. Krupková: Variational analysis on fibered manifolds over one-dimensional bases.PhD Thesis, Dept. of Math., Silesian University, Opava, 1992, pp. 67.
Reference: [10] O. Krupková: Symmetries and first integrals of time-dependent higher-order constrained systems.J. Geom. Phys. 18 (1996), 38-58. MR 1370828, 10.1016/0393-0440(95)00002-X
Reference: [11] G. Marmo G. Mendella W. M. Tulczyjew: Symmetries and constants of the motion for dynamics in implicit form.Ann. Inst. Henri Poincaré, Phys. Theor. 57(1992), 147-166. MR 1184887
Reference: [12] E. Noether: Invariante Variationsprobleme.Nachr. Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. (1918), 235-257.
.

Files

Files Size Format View
MathBohem_122-1997-3_5.pdf 541.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo