| Title: | A PU-integral on an abstract metric space (English) | 
| Author: | Riccobono, Giuseppa | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 122 | 
| Issue: | 1 | 
| Year: | 1997 | 
| Pages: | 83-95 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true. (English) | 
| Keyword: | PU-integral | 
| Keyword: | partition of unity | 
| MSC: | 26A39 | 
| MSC: | 28A25 | 
| MSC: | 46G12 | 
| idZBL: | Zbl 0891.28003 | 
| idMR: | MR1446402 | 
| DOI: | 10.21136/MB.1997.126181 | 
| . | 
| Date available: | 2009-09-24T21:23:09Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/126181 | 
| . | 
| Reference: | [1] A. M. Bruckner: Differentiation of integrals.Amer. Math. Monthly, No. 9 Supplement 78 (1971), 1-51. Zbl 0225.28002, MR 0293044 | 
| Reference: | [2] D. Caponetti, V. Marraffa: An integral in the real line defined by BV partitions of unity.Atti Semin. Mat. Fis., Univ. Modena, 42 (1994), 69-82. Zbl 0824.26004, MR 1282323 | 
| Reference: | [3] R. O. Davies, Z. Schuss: A proof that Henstock's integral includes Lebesgue's.J. London Math. Soc. (2) 2 (1970), 561-562. Zbl 0197.04103, MR 0265526, 10.1112/jlms/2.Part_3.561 | 
| Reference: | [4] G. A. Edgar: Measure, topology and fractal geometry.Springer-Verlag, 1990. Zbl 0727.28003, MR 1065392 | 
| Reference: | [5] H. Hahn, A. Rosenthal: Set functions.Albuquerque, N. Mexico, 1948. Zbl 0033.05301, MR 0024504 | 
| Reference: | [6] R. Henstock: The general theory of integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 | 
| Reference: | [7] R. Henstock: Measure spaces and division spaces.Real Anal. Exchange 19 (1) (1993/94). 121-128. MR 1268837 | 
| Reference: | [8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J. 35 (110) (1985), 116-139. MR 0779340 | 
| Reference: | [9] J. Jarník, J. Kurzweil: A new and more powerful concept of the PU-integral.Czechoslovak Math. J. 38 (113) (1988), 8-48. MR 0925939 | 
| Reference: | [10] J. Kurzweil J. Mawhin, W. Pfeffer: An integral defined by approximating BV paгtitions of unity.Czechoslovak Math. J. 41 (116) (1991), 695-712. MR 1134958 | 
| Reference: | [11] W. F. Pfeffer: The divergence theorem.Trans. Amer. Math. Soc. 295 (2) (1986), 665-685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0 | 
| Reference: | [12] W. F. Pfeffer, Wei-Chi Yang: A note on conditionally convergent integrals.Real Anal. Exchange 17 (1991/92), 815-819. MR 1171426 | 
| Reference: | [13] W. F. Pfeffer: The Riemann approach to integration.Cambridge University Pгess, 1993. Zbl 0804.26005, MR 1268404 | 
| . |