Previous |  Up |  Next

Article

Title: Transitivity and partial order (English)
Author: Klaška, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 1
Year: 1997
Pages: 75-82
Summary lang: English
.
Category: math
.
Summary: In this paper we find a one-to-one correspondence between transitive relations and partial orders. On the basis of this correspondence we deduce the recurrence formula for enumeration of their numbers. We also determine the number of all transitive relations on an arbitrary $n$-element set up to $n=14$. (English)
Keyword: enumeration
Keyword: transitivity
Keyword: partial order
MSC: 04A05
MSC: 05A15
MSC: 06A07
MSC: 54A10
idZBL: Zbl 0889.05008
idMR: MR1446401
DOI: 10.21136/MB.1997.126183
.
Date available: 2009-09-24T21:23:02Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126183
.
Reference: [1] Z. I. Borevich: Periodicity of residues of the numbeг of finite labeled $T_0$-topologies.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 114 (1982), 32-36. (In Russian.) MR 0669557
Reference: [2] Z. I. Borevich: A comparison for the number of finite labeled $T_0$-topologies.Mat. Issled. (1982), no. 65, 9-16. (In Russian.) MR 0669739
Reference: [3] M. Erné: Struktur- und Anzahlformeln für Topologien auf endlichen Mengen.Manuscripta Math. 11 (1974), 221-259. MR 0360300, 10.1007/BF01173716
Reference: [4] M. Erné аnd K. Stege: Counting finite posets and topologies.Order 8 (1991), no. 3, 247-265. MR 1154928, 10.1007/BF00383446
Reference: [5] J. W. Evаns F. Hаrаry аnd M. S. Lynn: On the computer enumeration of finite topologies.Coom. ACM 10 (1967), 295-298. 10.1145/363282.363311
Reference: [6] K. H. Kim аnd F. W. Roush: Posets and finite topologies.Pure Appl. Math. Sci. 14 (1981), no. 1-2, 9-22. MR 0613626
Reference: [7] J. Klаškа: Partitions and partially ordered sets.Acta Math. Inform. Univ. Ostraviensis 3 (1995), 45-54. MR 1474065
Reference: [8] D. Kleitmаn аnd B. Rothschild: Asymptotic enumeration of partial orders on a finite set.Trans. Amer. Math. Soc. 205 (1975), 205-220. MR 0369090, 10.1090/S0002-9947-1975-0369090-9
Reference: [9] V. Novák аnd M. Novotný: Transitive ternary relations and quasiorderings.Arch. Math. (Brno) 25 (1989), no. 1-2, 5-12. MR 1189193
Reference: [10] V. Novák аnd M. Novotný: Binaгy and teгnary relations.Math. Bohem. 117 (1992), no. 3, 283-292.
.

Files

Files Size Format View
MathBohem_122-1997-1_7.pdf 580.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo