Previous |  Up |  Next

Article

Title: Modulární křivky a Fermatova věta (Czech)
Title: Modular curves and Fermat's theorem (English)
Author: Nekovář, Jan
Language: Czech
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 119
Issue: 1
Year: 1994
Pages: 79-96
.
Category: math
.
Keyword: modular curves
Keyword: survey
Keyword: Taniyama conjecture
Keyword: Fermat’s last theorem
MSC: 11D41
MSC: 11F80
MSC: 11G05
MSC: 11G18
MSC: 11G40
MSC: 14H52
idZBL: Zbl 0813.11016
idMR: MR1303554
DOI: 10.21136/MB.1994.126199
.
Date available: 2009-09-24T21:03:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126199
.
Reference: [1] S. Bloch K. Kato: L-functions and Tamagawa numbers of motives.In: The Grothendieck Festschrift I, Progress in Mathematics 86. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333-400. MR 1086888
Reference: [2] H. C. Clemens: A scrapbook of complex curve theory.Plenum Press, New York, London, 1980. Zbl 0456.14016, MR 0614289
Reference: [3] J. Coates A. Wiles: On the Conjecture of Birch and Swinnerton-Dyer.Invent. Math. 39 (1977), 223-251. MR 0463176, 10.1007/BF01402975
Reference: [4] M. Eichler: Quaternare quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion.Arch. Math. 5 (1954), 355-366. MR 0063406, 10.1007/BF01898377
Reference: [5] G. Faltings: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern.Invent. Math. 73 (1983), 349-366. Zbl 0588.14026, MR 0718935, 10.1007/BF01388432
Reference: [6] M. Flach: A finiteness theorem for the symmetric square of an elliptic curve.Invent. Math. 109 (1992), 307-327. Zbl 0781.14022, MR 1172693, 10.1007/BF01232029
Reference: [7] G. Frey: Links between stable elliptic curves and certain diophantine equations.Ann. Univ. Sarav. 1 (1986), 1-40. Zbl 0586.10010, MR 0853387
Reference: [8] G. Frey: Links between solutions of A - B = C and elliptic curves.Lecture Notes in Math. 1380. 1989, pp. 31-62. Zbl 0688.14018, MR 1009792, 10.1007/BFb0086544
Reference: [9] P. Griffiths J. Harris: Principles of Algebraic Geometry.Wiley, New York, 1978. MR 0507725
Reference: [10] H. Hasse: Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fallen.Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1933), 253-262.
Reference: [11] K. Ireland M. Rosen: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84, Springer, New York, Heidelberg, Berlin, 1982. MR 0661047
Reference: [12] V. A. Kolyvagin: Koněčnosť E(Q) i Ш(E, Q) dlja podklassa krivych Vejlja.Izv. Akad. Nauk SSSR, Ser. Mat. 52 (1988), 522-540.
Reference: [13] V. A. Kolyvagin: O gruppach Mordella-Vejlja i Šafareviča-Tejta dlja elliptičeskich krivych Vejlja.zv. Akad. Nauk SSSR, Ser. Mat. 52(1988), 1156-1180.
Reference: [14] V. A. Kolyvagin: Euler Systems.In: The Grothendieck Festschrift II, Progress in Mathematics 87. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 435-483. Zbl 0742.14017, MR 1106906
Reference: [15] S. Lang: Elliptic Functions.Addison-Wesley, Reading, Mass., 1973. Zbl 0316.14001, MR 0409362
Reference: [16] S. Lang: Introduction to Modular Forms.Springer, Berlin, Heidelberg, New York, 1976. Zbl 0344.10011, MR 0429740
Reference: [17] B. Mazur: Modular curves and the Eisenstein ideal.Publ. Math. IHES 47 (1977), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339
Reference: [18] B. Mazur: Deforming Galois representations. Galois Groups over Q.Math. Sci. Res. Inst. Publ., vol. 16. Springer-Verlag Berlin and New York, 1989, pp. 385-437. MR 1012172, 10.1007/978-1-4613-9649-9_7
Reference: [19] B. Mazur: .Letter to J.-F. Mestre (16 August 1985). Zbl 0588.76163
Reference: [20] B. Mazur: Number theory as gadfly.Amer. Math. Monthly 98 (1991), 593-610. Zbl 0764.11021, MR 1121312, 10.1080/00029890.1991.11995762
Reference: [21] B. Mazur: On the passage from local to global in number theory.Bulletin AMS 29 (1993), no. 1, 14-50. Zbl 0813.14016, MR 1202293, 10.1090/S0273-0979-1993-00414-2
Reference: [22] B. Mazur K. Ribet: Two-dimensional representations in the arithmetic of modular curves.In: Asterisque 196/197, S.M.F.. 1991, pp. 215-255. MR 1141460
Reference: [23] B. Mazur A. Wiles: Class fields of abelian extensions of Q.Invent. Math. 76(1984), 179-330. MR 0742853
Reference: [24] J. Nekovář: Values of L-functions and p-adic cohomology.In: Proceedings ECM 1992 Paris, to appear. MR 1341847
Reference: [25] A. Ogg: Modular forms and Dirichlet series.Benjamin, 1969. Zbl 0191.38101, MR 0256993
Reference: [26] K. A. Ribet: On modular representations of $Gal(\overline{Q}/Q)$ arising from modular forms.Invent. Math. 100 (1990), 431-476. MR 1047143, 10.1007/BF01231195
Reference: [27] K. A. Ribet: From the Taniyama-Shimura Conjecture to Fermat's Last Theorem.Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. Zbl 0726.14015, MR 1191476, 10.5802/afst.698
Reference: [28] K. A. Ribet: Report on mod l representations of $Gal(\overline{Q}/Q)$.In: Proceedings of the "Motives" conference, Seattle 1991. to appear in Proc. Symp. Pure Math. MR 1265566
Reference: [29] K. Rubin: The "main conjecture" of Iwasawa theory for imaginary quadratic fields.Invent. Math. 103 (1991), 25-68. MR 1079839, 10.1007/BF01239508
Reference: [30] J.-P. Serre: A Course in Arithmetic.Springer, New York, 1973. Zbl 0256.12001, MR 0344216
Reference: [31] J.-P. Serre: .Lettre à J.-F. Mestre, (13 Août 1985). Contemp. Math. 67(1987), 263-268. Zbl 0596.12004, MR 0902597
Reference: [32] J.-P. Serre: Sur les représentations modulaires de degré 2 de Gal.Duke Math. J. 54 (1987), 179-230. MR 0885783, 10.1215/S0012-7094-87-05413-5
Reference: [33] G. Shimura: Correspondences modulaires et les fonctions $\zeta$ de courbes algébriques.J. Math. Soc. Japan 10 (1958), 1-28. MR 0095173, 10.2969/jmsj/01010001
Reference: [34] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions.Princeton University Press, 1971. Zbl 0221.10029, MR 0314766
Reference: [35] J. H. Silverman: The arithmetic of elliptic curves.Graduate Texts in Math., vol. 106, Springer, New York, 1986, Zbl 0585.14026, MR 0817210
Reference: [36] J. Tunnell: Artin's conjecture for representations of octahedral type.Bull. Amer. Math. Soc. (N.S.) 5 (1981), 173-175. Zbl 0475.12016, MR 0621884, 10.1090/S0273-0979-1981-14936-3
Reference: [37] H. Weber: Lehrbuch der Algebra, III.1908.
Reference: [38] A. Weil: Elliptic functions according to Eisenstein and Kronecker.Springer, New York, 1976. Zbl 0318.33004, MR 0562289
Reference: [39] A. Wiles: Higher explicit reciprocity laws.Ann. of Math. 107(1978), 235-254. Zbl 0378.12006, MR 0480442, 10.2307/1971143
Reference: [40] A. Wiles: On ordinary $\lambda$-adic representations associated to modular forms.Invent. Math. 94 (1988), 529-573. Zbl 0664.10013, MR 0969243, 10.1007/BF01394275
Reference: [41] A. Wiles: The Iwasawa conjecture for totally real fields.Ann. of Math. 131 (1990), 493-540. Zbl 0719.11071, MR 1053488, 10.2307/1971468
Reference: [42] A. Wiles: On a conjecture of Brumer.Ann. of Math. 131 (1990), 555-565. Zbl 0719.11082, MR 1053490, 10.2307/1971470
.

Files

Files Size Format View
MathBohem_119-1994-1_8.pdf 2.889Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo