Previous |  Up |  Next

Article

Title: Wiles dokázal Taniyamovu hypotézu; důsledkem je Fermatova věta (Czech)
Title: Wiles proves Taniyama's conjecture; Fermat's last theorem follows (English)
Author: Ribet, Kenneth A.
Language: Czech
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 119
Issue: 1
Year: 1994
Pages: 75-78
.
Category: math
.
Keyword: Taniyama’s conjecture
Keyword: Fermat’s last theorem
MSC: 11D41
MSC: 11F80
MSC: 11G05
MSC: 14H52
idZBL: Zbl 0808.11040
idMR: MR1303553
DOI: 10.21136/MB.1994.126202
.
Date available: 2009-09-24T21:03:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126202
.
Reference: [1] M. Flach: A finiteness theorem for the symmetric square of an elliptic curve.lnvent. Math. 100(1992), 307-327. Zbl 0781.14022, MR 1172693
Reference: [2] G. Frey: Links between stable elliptic curves and certain diophantine equations.Ann. Univ. Sarav. 1 (1986), 1-40. Zbl 0586.10010, MR 0853387
Reference: [3] G. Frey: Links between solutions of A - B = C and elliptic curves.Lecture Notes in Math. 1380 (1989), 31-62. Zbl 0688.14018, MR 1009792, 10.1007/BFb0086544
Reference: [4] R. P. Langlands: Base change for GL(2).Ann. of Math. Stud., vol. 96, Princeton Univ. Press, Princeton, NJ. 1980. Zbl 0444.22007, MR 0574808
Reference: [5] B. Mazur: Modular curves and the Eisenstein ideal.Publ. Math. IHES 47 (1977), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339
Reference: [6] B. Mazur: Deforming Galois representations. Galois Groups over Q.Math. Sci. Res. Inst. Publ., vol. 16, Springer-Verlag Berlin and New York, 1989, 385-437. MR 1012172, 10.1007/978-1-4613-9649-9_7
Reference: [7] B. Mazur: Number theory as gadfly.Amer. Matli. Monthly 98(1991), 593-610. Zbl 0764.11021, MR 1121312, 10.1080/00029890.1991.11995762
Reference: [8] K. A. Ribet: On modular representations of $Gal(\overline{Q}/Q)$ arising from modular forms.lnvent. Math. 100(1990), 431-476. MR 1047143
Reference: [9] K. A. Ribet: From the Taniyama-Shimura Conjecture to Fermat's Last Theorem.Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. Zbl 0726.14015, MR 1191476, 10.5802/afst.698
Reference: [10] J.-P. Serre: .Lettre à J.-F. Mestre, 13 Août 1985. Contemp. Mat. 67 (1987), 263-268. Zbl 0596.12004, MR 0902597
Reference: [11] J.-P. Serre: Sur les représentations modulaires de degré 2 de $Gal(\overline{Q}/Q)$.Duke Math. J. 54 (1987), 179-230. MR 0885783, 10.1215/S0012-7094-87-05413-5
Reference: [12] J. H. Silverman: The arithmetic of elliptic curves.Graduate Texts in Math., vol. 106, Springer, New York (1986). Zbl 0585.14026, MR 0817210
Reference: [13] J. Tunnell: Artin's conjecture for representations of octahedral type.Bull. Amer. Math. Soc. (N.S.) 5 (1981), 173-175. Zbl 0475.12016, MR 0621884, 10.1090/S0273-0979-1981-14936-3
.

Files

Files Size Format View
MathBohem_119-1994-1_7.pdf 859.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo