Previous |  Up |  Next

Article

Title: On the measures of DiPerna and Majda (English)
Author: Kružík, Martin
Author: Roubíček, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 4
Year: 1997
Pages: 383-399
Summary lang: English
.
Category: math
.
Summary: DiPerna and Majda generalized Young measures so that it is possible to describe "in the limit" oscillation as well as concentration effects of bounded sequences in $L^p$-spaces. Here the complete description of all such measures is stated, showing that the "energy" put at "infinity" by concentration effects can be described in the limit basically by an arbitrary positive Radon measure. Moreover, it is shown that concentration effects are intimately related to rays (in a suitable locally convex geometry) in the set of all DiPerna-Majda measures. Finally, a complete characterization of extreme points and extreme rays is established. (English)
Keyword: bounded sequences in Lebesgue spaces
Keyword: oscillations
Keyword: Young measures
Keyword: DiPerna and Majda measures
Keyword: rays
Keyword: extreme points
Keyword: extreme rays
Keyword: concentrations
MSC: 28C15
MSC: 40A30
MSC: 46N10
MSC: 49Q20
idZBL: Zbl 0902.28009
idMR: MR1489400
DOI: 10.21136/MB.1997.126212
.
Date available: 2009-09-24T21:28:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126212
.
Reference: [1] J. J. Alibert G. Bouchitté: Non uniform integrability and generalized Young measures.J. Convex. Anal. 4 (1997), 1-19. MR 1459885
Reference: [2] J. P. Aubin H. Frankowska: Set-valued Analysis.Birkhäuser, 1990. MR 1048347
Reference: [3] E. J. Balder: New existence results for optimal controls in the absence of convexity: the importance of extremality.SIAM J. Control Anal. 32 (1994), 890-916. Zbl 0813.49004, MR 1269997, 10.1137/S0363012990193099
Reference: [4] J. M. Ball: PDEs and Continuum Models of Phase Transition.(M. Rascle, D. Serre, M. Slemrod., eds.). Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207-215. MR 1036070
Reference: [5] R. J. DiPerna A. J. Majda: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Comm. Math. Physics 108 (1987), 667-689. MR 0877643, 10.1007/BF01214424
Reference: [6] R. J. DiPerna A. J. Majda: Concentrations in regularizations for 2-D incompressible flow.Comm. Pure Appl. Math. 40 (1987), 301-345. MR 0882068, 10.1002/cpa.3160400304
Reference: [7] R. J. DiPerna A. J. Majda: Reduced Hausdorff dimension and concentration cancellation for 2-D incompressible flow.J. Amer. Math. Soc. 1 (1988), 59-95. MR 0924702
Reference: [8] N. Dunford J. T. Schwartz: Linear Operators. Part I.Interscience, New York, 1967.
Reference: [9] C. Greengard E. Thomann: On DiPerna-Majda concentration sets for two-dimensional incompresssible flow.Comm. Pure Appl. Math. 41 (1988), 295-303. MR 0929281, 10.1002/cpa.3160410303
Reference: [10] P. R. Halmos: Measure Theory.D. van Nostrand, 1950. Zbl 0040.16802, MR 0033869
Reference: [11] G. Köthe: Topological Vector Spaces I.2nd ed. Springer, Berlin, 1983. MR 0551623
Reference: [12] M. Kružík T. Roubíček: Explicit characterization of $L^p$-Young measures.J. Math. Anal. Appl. 198 (1996), 830-843. MR 1377827, 10.1006/jmaa.1996.0115
Reference: [13] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus.W. de Gruyter, Berlin, 1997. MR 1458067
Reference: [14] T. Roubíček: Nonconcentrating generalized Young functionals.Comment. Math. Univ. Carolin. 38 (1997), 91-99. MR 1455472
Reference: [15] M. E. Schonbek: Convergence of solutions to nonlinear dispersive equations.Comm. Partial Differential Equations 7 (1982), 959-1000. Zbl 0496.35058, MR 0668586, 10.1080/03605308208820242
Reference: [16] L. Tartar: Compensated compactness and applications to partial differential equations.Nonlinear Analysis and Mechanics (R. J. Knops, ed.). Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco, 1979. Zbl 0437.35004, MR 0584398
Reference: [17] M. Valadier: Young measures.Methods of Nonconvex Analysis (A. Cellina, ed.). Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp. 152-188. Zbl 0742.49010, MR 1079763
Reference: [18] J. Warga: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708
Reference: [19] L. C. Young: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212-234. Zbl 0019.21901
.

Files

Files Size Format View
MathBohem_122-1997-4_7.pdf 1.002Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo