Title:
|
The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems (English) |
Author:
|
Drábek, Pavel |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
120 |
Issue:
|
2 |
Year:
|
1995 |
Pages:
|
169-195 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem
\align-\operatorname{div}(a(x,u)|\nablau|^{p-2}\nabla u) = &\lambda b(x,u)|u|^{p-2}u \quad\text{ in } \Omega,
u = &0 \hskip2cm\text{ on } \partial\Omega, \endalign where $\Omega$ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty(\Omega)$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem. (English) |
Keyword:
|
boundedness of eigenfunction |
Keyword:
|
weighted Sobolev space |
Keyword:
|
Schauder fixed point theorem |
Keyword:
|
degenerated quasilinear partial differential equations |
Keyword:
|
weak solutions |
Keyword:
|
eigenvalue problems |
Keyword:
|
boundedness of the solution |
MSC:
|
35B35 |
MSC:
|
35B45 |
MSC:
|
35J20 |
MSC:
|
35J65 |
MSC:
|
35J70 |
MSC:
|
35P30 |
MSC:
|
47H12 |
MSC:
|
47N20 |
idZBL:
|
Zbl 0839.35049 |
idMR:
|
MR1357600 |
DOI:
|
10.21136/MB.1995.126227 |
. |
Date available:
|
2009-09-24T21:10:09Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126227 |
. |
Reference:
|
[1] R. A. Adams: Sobolev Spaces.Academic Press, Inc., New York, 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] A. Anane: Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids.C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. Zbl 0633.35061, MR 0920052 |
Reference:
|
[3] G. Barles: Remarks on uniqueness results of the first eigenvalue of the p-Laplacian.Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75. Zbl 0621.35068, MR 0971814 |
Reference:
|
[4] T. Bhattacharya: Radial symmetry of the first eigenfunction for the p-Laplacian in the ball.Proc. Amer. Math Society 104 (1988), 169-174. Zbl 0673.35083, MR 0958061 |
Reference:
|
[5] L. Boccardo: Positive eigenfunctions for a class of quasi-linear operators.Bollettino U. M. I. (5) 18-B (1981), 951-959. Zbl 0496.47051, MR 0641748 |
Reference:
|
[6] P. Drábek M. Kučera: Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities.Bull. Austral. Math. Society 37(1988), 179-187. MR 0930787 |
Reference:
|
[7] P. Drábek A. Kufner F. Nicolosi: On the solvability of degenerated quasilinear elliptic equations of higher order.J. Differential Equations 109 (1994), 325-347. MR 1273306, 10.1006/jdeq.1994.1053 |
Reference:
|
[8] S. Fučík A. Kufner: Nonlinear Differential Equations.Elsevier, The Netherlands, 1980. MR 0558764 |
Reference:
|
[9] J. García Azorero I. Peral Alonso: Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues.Comm. Partial Differential Equations 12 (1987), 1389-1430. MR 0912211 |
Reference:
|
[10] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102 |
Reference:
|
[11] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces.Teubner, Band 100, Leipzig, 1987. MR 0926688 |
Reference:
|
[12] P. Lindqvist: On the equation $div(| \nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$.Proc. Amer. Math. Society 109 (1990), 157-164. Zbl 0714.35029, MR 1007505 |
Reference:
|
[13] M. K. V. Murthy G. Stampacchia: Boundary value problems for some degenerate elliptic operators.Annali di Matematica (4) 80 (1968), 1-122. MR 0249828 |
Reference:
|
[14] M. Otani T. Teshima: The first eigenvalue of some quasilinear elliptic equations.Proc. Japan Academy 64, ser. A (1988), 8-10. MR 0953752 |
Reference:
|
[15] M. M. Vainberg: Variational Methods for the Study of Nonlinear Operators.Holden-Day, Inc. San Francisco, 1964. Zbl 0122.35501, MR 0176364 |
. |