Previous |  Up |  Next

Article

Title: The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems (English)
Author: Drábek, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 2
Year: 1995
Pages: 169-195
Summary lang: English
.
Category: math
.
Summary: We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem \align-\operatorname{div}(a(x,u)|\nablau|^{p-2}\nabla u) = &\lambda b(x,u)|u|^{p-2}u \quad\text{ in } \Omega, u = &0 \hskip2cm\text{ on } \partial\Omega, \endalign where $\Omega$ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty(\Omega)$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem. (English)
Keyword: boundedness of eigenfunction
Keyword: weighted Sobolev space
Keyword: Schauder fixed point theorem
Keyword: degenerated quasilinear partial differential equations
Keyword: weak solutions
Keyword: eigenvalue problems
Keyword: boundedness of the solution
MSC: 35B35
MSC: 35B45
MSC: 35J20
MSC: 35J65
MSC: 35J70
MSC: 35P30
MSC: 47H12
MSC: 47N20
idZBL: Zbl 0839.35049
idMR: MR1357600
DOI: 10.21136/MB.1995.126227
.
Date available: 2009-09-24T21:10:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126227
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, Inc., New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] A. Anane: Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids.C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. Zbl 0633.35061, MR 0920052
Reference: [3] G. Barles: Remarks on uniqueness results of the first eigenvalue of the p-Laplacian.Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75. Zbl 0621.35068, MR 0971814
Reference: [4] T. Bhattacharya: Radial symmetry of the first eigenfunction for the p-Laplacian in the ball.Proc. Amer. Math Society 104 (1988), 169-174. Zbl 0673.35083, MR 0958061
Reference: [5] L. Boccardo: Positive eigenfunctions for a class of quasi-linear operators.Bollettino U. M. I. (5) 18-B (1981), 951-959. Zbl 0496.47051, MR 0641748
Reference: [6] P. Drábek M. Kučera: Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities.Bull. Austral. Math. Society 37(1988), 179-187. MR 0930787
Reference: [7] P. Drábek A. Kufner F. Nicolosi: On the solvability of degenerated quasilinear elliptic equations of higher order.J. Differential Equations 109 (1994), 325-347. MR 1273306, 10.1006/jdeq.1994.1053
Reference: [8] S. Fučík A. Kufner: Nonlinear Differential Equations.Elsevier, The Netherlands, 1980. MR 0558764
Reference: [9] J. García Azorero I. Peral Alonso: Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues.Comm. Partial Differential Equations 12 (1987), 1389-1430. MR 0912211
Reference: [10] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [11] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces.Teubner, Band 100, Leipzig, 1987. MR 0926688
Reference: [12] P. Lindqvist: On the equation $div(| \nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$.Proc. Amer. Math. Society 109 (1990), 157-164. Zbl 0714.35029, MR 1007505
Reference: [13] M. K. V. Murthy G. Stampacchia: Boundary value problems for some degenerate elliptic operators.Annali di Matematica (4) 80 (1968), 1-122. MR 0249828
Reference: [14] M. Otani T. Teshima: The first eigenvalue of some quasilinear elliptic equations.Proc. Japan Academy 64, ser. A (1988), 8-10. MR 0953752
Reference: [15] M. M. Vainberg: Variational Methods for the Study of Nonlinear Operators.Holden-Day, Inc. San Francisco, 1964. Zbl 0122.35501, MR 0176364
.

Files

Files Size Format View
MathBohem_120-1995-2_5.pdf 1.263Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo